Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+3y=1\Rightarrow x=\frac{1-3y}{2}\)
Ta có \(S=3x^2+2y^2=3.\left(\frac{1-3y}{2}\right)^2+2y^2=\frac{35y^2-18y+3}{4}\)
\(=\frac{35\left(y^2-2.y.\frac{9}{35}+\frac{81}{1225}\right)+\frac{24}{35}}{4}=\frac{35}{4}\left(y-\frac{9}{35}\right)^2+\frac{6}{35}\)
Ta có \(35\left(y-\frac{9}{35}\right)^2\ge0\forall x\Rightarrow35\left(y-\frac{9}{35}\right)^2+\frac{6}{35}\ge\frac{6}{35}\forall x\Rightarrow S\ge\frac{6}{35}\)
Vậy \(MinS=\frac{6}{35}\)khi \(y=\frac{9}{35}\)
\(x+y=3\Leftrightarrow x=3-y\\ \Leftrightarrow A=\left(3-y\right)^2+3y^2+2y+5\\ A=y^2-6y+9+3y^2+2y+5\\ A=\left(4y^2-4y+1\right)+13=\left(2y-1\right)^2+13\ge13\\ A_{min}=13\Leftrightarrow y=\dfrac{1}{2}\Leftrightarrow x=3-\dfrac{1}{2}=\dfrac{5}{2}\)
Lời giải:
$2Q=2x^2+2xy+2y^2-6x-6y+3998$
$=(x^2+2xy+y^2)+x^2+y^2-6x-6y+3998$
$=(x+y)^2-4(x+y)+(x^2-2x)+(y^2-2y)+3998$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+3992$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+3992\geq 3992$
$\Rightarrow Q\geq 1996$
Vậy $Q_{\min}=1996$ khi $x+y-2=x-1=y-1=0\Leftrightarrow x=y=1$
------------------
$R=(x^2+2xy+y^2)+x^2-2x+2y+15$
$=(x+y)^2+2(x+y)+x^2-4x+15$
$=(x+y)^2+2(x+y)+1+(x^2-4x+4)+10$
$=(x+y+1)^2+(x-2)^2+10\geq 10$
Vậy $R_{\min}=10$ khi $x+y+1=x-2=0$
$\Leftrightarrow x=2; y=-3$
cho em hỏi khúc này là sao ạ:
=(x+y−2)^2+(x−1)^2+(y−1)^2+3992≥3992
^
| em chỉ chx hiểu khúc này thôi
Trả lời:
1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)
\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)
Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)
\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)
Vậy GTNN của P = 23/36 khi x = 7/18