Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+y^2+z^2-2x-2xy+2z+2=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(z^2+2z+1\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x-1\right)^2\ge0\forall x\\\left(z+1\right)^2\ge0\forall z\end{cases}\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2\ge0\forall x;y;z}\)
Do đó: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\x-1=0\\z+1=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=1\\z=-1\end{cases}}}\)
Vậy \(x+y+z=1+1+\left(-1\right)=2\)
Chúc bạn học tốt.
Sửa đề: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1+z^2-4z+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)
=>x=y=1 và z=2
\(A=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}\)
\(=\left(1-1\right)^{2018}+\left(1-1\right)^{2019}+\left(2-1\right)^{2020}\)
=1
Lời giải:
Ta có:
\(2x^2+y^2+z^2-2x-2xy+2z+2=0\)
\(\Leftrightarrow (x^2+y^2-2xy)+(x^2-2x+1)+(z^2+2z+1)=0\)
\(\Leftrightarrow (x-y)^2+(x-1)^2+(z+1)^2=0(*)\)
Vì \((x-y)^2; (x-1)^2; (z+1)^2\geq 0, \forall x,y,z\in\mathbb{R}\)
Do đó, để $(*)$ xảy ra thì \((x-y)^2=(x-1)^2=(z+1)^2=0\)
\(\Rightarrow \left\{\begin{matrix} x=y=1\\ z=-1\end{matrix}\right.\)
\(\Rightarrow P=x+y+z=1\)
\(2x^2+y^2+z^2-2xy-2x+1=0\)
\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+z^2=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2=0\)
\(\Leftrightarrow x=y=1;=0\)
\(A=x^{2018}+y^{2019}+z^{2020}=1+1+0=2\)
2)
\(a+b+c=6\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=36\)
\(\Leftrightarrow12+2\left(ab+bc+ac\right)=36\Leftrightarrow ab+bc+ac=12\)
Kết hợp với \(a^2+b^2+c^2=12\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Kết hợp với \(a+b+c=6\Leftrightarrow a=b=c=2\)
\(P=\left(a-3\right)^{2019}+\left(b-3\right)^{2019}+\left(c-3\right)^{2019}=\left(-1\right)^{2019}+\left(-1\right)^{2019}+\left(-1\right)^{2019}=-3\)
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
2x2 + y2 + z2 - 2x - 2xy + 2Z + 2 = 0
⇔ (x2 - 2x +1) + (y2 -2xy + x2) + (z2 + 2Z + 1) = 0
⇔(x-1)2 + ( y-x)2 + ( z + 1)2 = 0
⇔ x = 1; y= x =1; z = -1 thay vào A ta có:
A = ( 1-2)2018 + (1+1)2019 - ( -1 +2)2020
A = (-1)2018 + 22019 - (1)2020
A = 1 + 22019 + 1
A = 2 + 22019
2x2 + y2 + z2 - 2x - 2xy + 2Z + 2 = 0
⇔ (x2 - 2x +1) + (y2 -2xy + x2) + (z2 + 2Z + 1) = 0
⇔(x-1)2 + ( y-x)2 + ( z + 1)2 = 0
⇔ x = 1; y= x =1; z = -1 thay vào A ta có:
A = ( 1-2)2018 + (1+1)2019 - ( -1 +2)2020
A = (-1)2018 + 22019 - (1)2020
A = 1 + 22019 - 1
A = 22019