Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Bài 2:
\(\frac{4^x}{2^{x+y}}=8\Leftrightarrow4^x=8.2^{x+y}\Leftrightarrow\left(2^2\right)^x=2^3.2^{x+y}\Leftrightarrow2^{2x}=2^{x+y+3}\)<=>2x=x+y+3<=>x=y+3
\(\frac{9^{x+y}}{3^{5y}}=243\Leftrightarrow9^{x+y}=243.3^{5y}\Leftrightarrow\left(3^2\right)^{x+y}=3^5.3^{5y}\Leftrightarrow3^{2x+2y}=3^{5y+5}\)<=>2x+2y=5y+5
<=>2x=3y+5 mà x=y+3 => 2(y+3)=3y+5 <=> 2y+6=3y+5 <=> 6-5=3y-2y <=> y=1 <=> x=1+3=4
Vậy xy=4.1=4
\(\frac{4^x}{2^{x+y}}=8=>\frac{\left(2^2\right)^x}{2^x.2^y}=8=>\frac{2^{2x}}{2^x.2^y}=8=>\frac{1}{2^y}=8=>2^y=\frac{1}{8}\)
\(=>2^y=\frac{1}{2^3}=2^{-3}=>y=-3\)\(\frac{9^{x+y}}{3^y}=243=>\frac{9^x.9^y}{3^y}=243=>\frac{9^x.\left(3^2\right)^y}{3^y}=243=>\frac{9^x.3^{2y}}{3^y}=243\)
\(=>\frac{9^x.3^y.3^y}{3^y}=243=>\left(3^2\right)^x.3^y=243=>3^{2x}.3^y=243=>3^{2x+y}=3^5=>2x+y=5\)
\(=>2x=5-y=5-\left(-3\right)=8=>x=4\)
Vậy x=4;y=-3
\(2^x=8^{y+1}< =>2^x=2^{3\left(y+1\right)}=>x=3\left(y+1\right)\) (1)
\(9^y=3^{x-9}< =>3^{2y}=3^{x-9}=>2y=x-9\) (2)
(1)&(2) => x=3y+3 và x=2y+9
trừ 2 vế, => 3y+3-2y-9=0 => y=6
và x=21
mình đang cần ạ!! ai nhanh mình k cho!!!