Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\frac{4y^2-\left(x-y\right)^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{x\left(x-2y\right)-2\left(x^2-xy\right)}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{3y^2+2xy-x^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{-x^2}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{\left(x+y\right)\left(3y-x\right)}{y^2\left(x-y\right)}.\frac{y\left(y-x\right)}{x-3y}-\frac{x^2}{2\left(x-2y\right)}.\frac{2\left(x-2y\right)}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)}{y}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{2xy+y^2}{y\left(x+y\right)}=\frac{2x+y}{x+y}\)
Giờ chỉ cần thế x, y vô nữa là xong nhé.
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y\left(y-x\right)}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x\left(x-y\right)}{x-2y}\right):\frac{y\left(x+y\right)}{2\left(x-2y\right)}\)
\(=\frac{4y\left(y-x\right)}{\left(x-y\right)\left(x-3y\right)}-\frac{\left(x-y\right)y\left(y-x\right)}{y^2\left(x-3y\right)}\)\(+\frac{x.2\left(x-2y\right)}{2.y\left(x+y\right)}-\frac{x\left(x-y\right).2\left(x-2y\right)}{\left(x-2y\right).y\left(x+y\right)}\)
\(=\frac{-4y}{x-3y}+\frac{\left(x-y\right)^2}{y\left(x-3y\right)}+\frac{x\left(x-2y\right)}{y\left(x+y\right)}-\frac{2x\left(x-y\right)}{y\left(x+y\right)}\)
\(=\frac{-4y^2+x^2-2xy+y^2}{y\left(x-3y\right)}+\frac{x^2-2xy-2x^2+2xy}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy-3y^2}{y\left(x-3y\right)}+\frac{-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2+xy-3xy-3y^2}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x\left(x+y\right)-3y\left(x+y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(\frac{\left(x+y\right)\left(x-3y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x+y}{y}-\frac{x^2}{y\left(x+y\right)}=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy+y^2-x^2}{y\left(x+y\right)}=\frac{-2xy+y^2}{y\left(x+y\right)}\)
\(=\frac{y\left(y-2x\right)}{y\left(x+y\right)}=\frac{y-2x}{x+y}\)
Thay \(x=\frac{1}{2};y=\frac{1}{3}\)vào A ta có :
\(A=\frac{\frac{1}{3}-2.\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}}=\frac{\frac{1}{3}-1}{\frac{3}{6}+\frac{2}{6}}=\frac{2}{3}:\frac{5}{6}=\frac{2.6}{3.5}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)tại \(x=\frac{1}{2};y=\frac{1}{3}\)
Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)
Vậy P=26
a) A \(=\)\(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)\(=\)\(\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\)\(\frac{2\left(x-2\right)}{x+2}\)\(=\)\(\frac{2x-4}{x+2}\)
Tại x = \(\frac{1}{2}\)thì:
A = \(\frac{2.\frac{1}{2}-4}{\frac{1}{2}+2}\)\(=\)\(\frac{-3}{\frac{5}{2}}\)\(=\)\(\frac{-6}{5}\)
a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)
\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)
b) Ta có: \(x+y=\frac{1}{40}\)
\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)
\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)
\(\Rightarrow x^2+y^2=\frac{41}{1600}\)
Vậy \(N=\frac{41}{1600}\)
Đề bài lạ thế!
\(A=-\frac{8}{5}x^3+\frac{36}{5}x^2y-\frac{54}{5}xy^2+\frac{27}{5}y^3\)
\(=-\frac{1}{5}\left(8x^3-36x^2y+54xy^2-27y^3\right)\)
=\(-\frac{1}{5}\left(\left(2x\right)^3-3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2-\left(3y\right)^3\right)\)
\(=-\frac{1}{5}\left(2x-3y\right)^3=-\frac{1}{5}.4^3=-\frac{64}{5}\)