Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b\ge2\sqrt{ab}=2\sqrt{1}=2\)(theo Cô-si)
Nhưng điều kiện đầu hơi kì, hoặc mình sai, bạn thử coi lại nhé!
Trước hết ta rút gọn D :
\(D=\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)(ĐKXĐ : \(a\ne0,b\ne0,ab\ne1\))
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}-\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{\left(1-\sqrt{ab}\right)\left(1+\sqrt{ab}\right)}:\frac{1+a+b+ab}{1-ab}\)
\(=\frac{2\sqrt{a}\left(b+1\right)}{1-ab}.\frac{1-ab}{\left(a+1\right)\left(b+1\right)}=\frac{2\sqrt{a}}{a+1}\)
a) Với \(a=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow D=\frac{2\sqrt{\left(\sqrt{3}-1\right)^2}}{4-2\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}\)
b) Ta có : \(\left(\sqrt{a}-1\right)^2\ge0\Leftrightarrow a+1\ge2\sqrt{a}\Leftrightarrow\frac{2\sqrt{a}}{a+1}\le1\)
Suy ra Max D = 1 <=> a = 1
\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế:
\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download
Rút gọn thừa số chung
Đơn giản biểu thức
Giải phương trình
Rút gọn thừa số chung
Giải phương trình
giải giùm mình với ạ