Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Delta=m^2-4\left(m+3\right)\le0\)
\(\Leftrightarrow m^2-4m-12\le0\Rightarrow-2\le m\le6\)
Câu 2:
Để BPT đã cho vô nghiệm tương đương \(mx^2-4\left(m+1\right)x+m-5\le0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4\le0\end{matrix}\right.\) \(\Leftrightarrow-4\le m\le-\frac{1}{3}\)
Tất cả các đáp án đều sai
Câu 3:
Để pt có 2 nghiệm pb
\(\Leftrightarrow\Delta'=\left(m-2\right)^2+2\left(m-2\right)>0\)
\(\Leftrightarrow m^2-2m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)
Tiếp tục tất cả các đáp án đều sai, đề bài gì kì vậy ta
2) a) hình tự vẽ nhé
gọi tọa độ điểm D là \(D\left(x;y\right)\)
ta có : \(\overrightarrow{BC}\left(-1;-1\right)\) ; \(\overrightarrow{AD}=\left(x-2;y+1\right)\)
vì ABCD là hình chữ nhật \(\Rightarrow\overrightarrow{BC}=\overrightarrow{AD}\Rightarrow\left\{{}\begin{matrix}-1=x-2\\-1=y+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) vậy ...
b) ĐK : \(-2\sqrt{2}\le x\le2\sqrt{2}\)
\(\sqrt{8-x^2}=x^2\) \(\Leftrightarrow x^4=8-x^2\) (bình phương 2 quế )
\(\Leftrightarrow x^4+x^2-8=0\Leftrightarrow\left[{}\begin{matrix}x^2=\frac{-1+\sqrt{33}}{2}\left(N\right)\\x^2=\frac{-1-\sqrt{33}}{2}\left(L\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{33}}{2}}\left(TMĐK\right)\) vậy ...
E chỉ bt sương sương Bài 1 a :((. Chắc ko đúng
\(\left\{{}\begin{matrix}x+y+z=3\\x-z=0\\z=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=3\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
ĐKXĐ: \(x\ge3\)
Đặt \(\sqrt{x-3}=t\ge0\Rightarrow x=t^2+3\)
\(\Rightarrow2\left(t^2+3\right)-t=m\Leftrightarrow2t^2-t+6=m\)
Xét \(f\left(t\right)=2t^2-t+6\) với \(t\ge0\)
\(-\frac{b}{2a}=\frac{1}{4}\Rightarrow f\left(\frac{1}{4}\right)=\frac{47}{8}\Rightarrow f\left(t\right)\ge\frac{47}{8}\)
\(\Rightarrow\) Để pt có nghiệm thì \(m\ge\frac{47}{8}\)
Giả sử \(x_0\) là nghiệm chung của hai phương trình
\(\Rightarrow\left\{{}\begin{matrix}x^2_0+ax_0+b=0\left(1\right)\\x^2_0+cx_0+d=0\left(2\right)\end{matrix}\right.\)
Lấy (1) - (2)
\(\Rightarrow x_0\left(a-c\right)=-\left(b-d\right)\)
\(\Leftrightarrow x_0^2\left(a-c\right)^2=\left(b-d\right)^2\) (*)
Lấy (1) nhân c; (2) nhân a
\(\Rightarrow\left\{{}\begin{matrix}cx^2_0+acx_0+bc=0\left(3\right)\\ax^2_0+acx_0+ad=0\left(4\right)\end{matrix}\right.\)
Lấy (4) -(3)
\(\Rightarrow\left(a-c\right)x^2_0+ad-bc=0\Leftrightarrow\left(a-c\right)x^2_0=-\left(ad-bc\right)\)
\(\Leftrightarrow\left(a-c\right)^2x^2_0=-\left(a-c\right)\left(ad-bc\right)\)(**)
Từ (*) và (**) ta được
\(\left(b-d\right)^2=-\left(a-c\right)\left(ad-bc\right)\Leftrightarrow\left(b-d\right)^2+\left(a-c\right)\left(ad-bc\right)\)