Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n+1 là số nguyên tố với n > 2
=> ta có: 2n+1-1 = 2n => chia hết cho 2 => 2n+1 là nguyên tố thì 2n-1 là hợp số (đpcm)
Lời giải:
$2^{2n+1}=4^n.2\equiv 1^n.2\equiv 2\pmod 3$
$\Rightarrow$ đặt $2^{2n+1}=3k+2$ với $k$ tự nhiên.
Do đó:
$2^{2^{2n+1}}+3=2^{3k+2}+3=8^k.4+3\equiv 1^k.4+3\pmod 7$
$\equiv 7\equiv 0\pmod 7$
Mà với $n$ nguyên dương thì $2^{2^{2n+1}}+3>7$ nên $2^{2^{2n+1}}+3$ là hợp số.
Vì n+1 và 2n+1 là số chính phương nên ta đặt n+1=k2 và 2n+1=m2 (k,m \(\in\)N)
Ta có: 2n+1 là số lẻ => m2 là số lẻ =>m là số lẻ
=>m=2a+1 (a \(\in\) N)
=>m2=(2a+1)2=(2a)2+2.2a.1+12
=4a.a+4.a+1
=4a(a+1)+1
=>n=\(\frac{2n-1}{2}=\frac{4a\left(a+1\right)+1-1}{2}=\frac{4a\left(a+1\right)}{2}=2a\left(a+1\right)\)
=>n là số chẵn
=>n+1 là số lẻ => n+1=2b+1 (b \(\in\)N)
=>k2=(2b+1)2=(2b)2+2.2b.1+12
=4b.b+4b+1
=4b(b+1)+1
=>n=4b(b+1)+1-1=4b(b+1)
Ta có: b(b+1) là tích 2 số tự nhiên liên tiếp
=>4b(b+1) chia hết cho 2.4=8 (1)
Ta có: k2+m2=(n+1)+(2n+1)=3n+2=2 (mod 3)
Mà k2 chia 3 dư 0 hoặc 1; m2 chia 3 dư 0 hoặc 1
=>Để k2+m2 =2 (mod 3)
thì k2=1 (mod 3)
và m2=1 (mod 3)
=>m2-k2 chia hết cho 3
=>(2n+1)-(n+1)=n chia hết cho 3
Vậy n chia hết cho 3 (2)
Từ (1) và (2) và (8;3)=1
=>n chia hết cho 8.3=24 (đpcm)
câu 1 bạn xét p là 2 số có 2 dạng là 3k+1 và 3k+2
câu 2 xét số đó là có dạng ab và xét từng tr hợp số chẵn lẻ
mik k có thời gian nên k vt đc cho bạn nên bạn tự lm nha
hộ
Tham khảo:
Ta có: 2^n+1;2^n;2^n-1 là 3 số tự nhiên liên tiếp
=>một trong 3 số trên chia hết cho 3
mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3
mặt khác: 2^n ko chia hết cho 3
=>2^n-1 chia hết cho 3
CHÚC CẬU HỌC TỐT VÀ ĐẠT KẾT QUẢ CAO!
Cảm ơn bạn nha :3