Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
=> \(n+2=p^2\) là số chính phương.
ta có p^2=(m+n)(m-1)
vì m+n>m-1
>0
m
+n=p^2
m-1=1
suy ra m=2=>n+2=p^2 là số chính phuopwng
TH1:n=3 => 3n+2=11 là snt
TH2:n>3
+)n=3k+1(k\(\in\)N) => 3n+2=3(3k+1)+2=9k+5 là snt
+)n=3k+2(k\(\in\)N) => 3n+2=3(3k+2)+2=9k+8 là snt
Qua các trường hợp trên ta luôn có đpcm
xét n=4k, 4k+1, 4k+2, 4k+3
lưu ý : số chính phương chia 4 dư 0 hoặc 1
Phương trình có 2 nghiêm nguyên dương m, n. Khi đó mn=q, m+n=p, do q là số nguyên tố nên chỉ có 2 ước nguyên dương là 1, q. Do đó {m, n}={1; q}
Khi đó 1+q=p, do đó p, q khác tính chẵn lẻ, mà chỉ có 2 là số nguyên tố chẵn, do đó q=2, p=3
p²+q²=2²+3²=13 là số nguyên tố ( đọc)
tự làm
Vì 2m - 1 là 1 số nguyên tố, mà 2 lại là một số chẵn nên kết quả 2m - 1 chắc chắn là số chẵn, mà 2m - 1 là số chẵn nguyên tố nên 2m - 1 = 2 => 2m - 1 = 21 => m - 1 = 1
Vậy m = 1 + 1 = 2, mà 2 là số nguyên tố nên m là số nguyên tố