K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

Gọi phương trình đã cho là f(x) 

Giả sử x = t là nghiệm hữu tỷ của f(x) thì: f(x) = (x - t)Q(x)

f(0) = a0 = - t.Q(x) (1)

Và f(1) = a2k + a2k-1 + ... + a1 + a0 = (1 - t).Q(x) (2)

Từ (1) ta có a0 là số lẻ nên t phải là số lẻ

Từ (2) ta thấy rằng a2k + a2k-1 + ... + a1 + alà tổng của 2k + 1 số lẻ nên là số lẻ. Từ đó ta thấy rằng (1 - t) là số lẻ

Mà (1 - t) là hiệu hai số lẻ nên không thể là số lẻ (mâu thuẫn)

Vậy f(x) không có nghiệm nguyên

17 tháng 11 2016

Với y =  0 thi 1 - xy = 0 là bình phương của số hữu tỷ

Với y \(\ne0\)thì ta chia 2 vế cho y4 thì được

\(\frac{x^5}{y^4}+y=2\frac{x^2}{y^2}\)

\(\Leftrightarrow-y=\frac{x^5}{y^4}-2\frac{x^2}{y^2}\)

\(\Leftrightarrow-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}\)

\(\Leftrightarrow\Leftrightarrow1-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)

Vậy 1 - xy là bình phương của 1 số hữu tỷ

14 tháng 9 2016

 Gọi hai số chính phương liên tiếp đó là k2 và (k+1)2

Ta có:

k2+(k+1)2+k2.(k+1)2

=k2+k2+2k+1+k4+2k3+k2

=k4+2k3+3k2+2k+1

=(k2+k+1)2

=[k(k+1)+1]2 là số chính phương lẻ.

9 tháng 2 2020

làm nhanh Cho nick face thì làm

11 tháng 6 2019

Bài 2.

\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)

( 3 số nguyên liên tiếp chia hết cho 3)

\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3

=> P chia hết cho 3

4 tháng 1 2019

ae ơi đề bài lại như này nhé chứng minh a 1 + a2 +....+a99 <1

4 tháng 1 2019

\(a_k=\frac{2k+1}{k^2\left(k+1\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{\left(k+1\right)^2}{k^2\left(k+1\right)^2}-\frac{k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)

\(S=\frac{1}{1^2}-\frac{1}{\left(1+1\right)^2}+\frac{1}{2^2}-\frac{1}{\left(2+1\right)^2}+\frac{1}{3^2}-\frac{1}{\left(3+1\right)^2}+...+\frac{1}{99^2}-\frac{1}{\left(99+1\right)^2}\)

\(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}< 1\) ( đpcm ) 

...