Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2}{\frac{1}{a}+\frac{1}{c}}=\frac{2ac}{a+c}\)
Thế \(b=\frac{2ac}{a+c}\) vào M, ta được:
\(M=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{1+\frac{2c}{a+c}}{2-\frac{2c}{a+c}}+\frac{1+\frac{2a}{a+c}}{2-\frac{2a}{a+c}}\)
\(M=\frac{\left(a+c\right)+2c}{2\left(a+c\right)-2c}+\frac{\left(a+c\right)+2a}{2\left(a+c\right)-2a}=\frac{a+3c}{2a}+\frac{3a+c}{2c}\)
\(M+2=\frac{a+3c}{2a}+1+\frac{3a+c}{2c}+1=\frac{3a+3c}{2a}+\frac{3a+3c}{2c}=\frac{3}{2}\left(a+c\right)\left(\frac{1}{a}+\frac{1}{c}\right)\)
\(M+2=\frac{3}{2}\left(1+\frac{a}{c}+\frac{c}{a}+1\right)=\frac{3}{2}\left(2+\frac{a}{c}+\frac{c}{a}\right)\)
Xét \(\frac{a}{c}+\frac{c}{a}\ge2\Leftrightarrow...\)(bạn tự biến đổi tương đương để chứng minh nó nhé)
(ĐK xảy ra dấu "=": a=c)
Do đó \(M+2=\frac{3}{2}\left(1+\frac{a}{c}+\frac{c}{a}+1\right)=\frac{3}{2}\left(2+\frac{a}{c}+\frac{c}{a}\right)\ge\frac{3}{2}\left(2+2\right)=6\Leftrightarrow M\ge4\)
Vậy GTNN của \(M=4\)khi \(a=c\Leftrightarrow\frac{2}{b}=\frac{2}{a}\Leftrightarrow b=a=c\)
Chúc bạn học tốt!
P/S: bài này khó thật đấy! Mình chuyên toán 9 mà giải hết nửa tiếng mới xong :D!
\(P=\frac{2}{-4x^2+8x-5}=\frac{2}{-\left(4x^2-8x+5\right)}\)
\(=\frac{2}{-\left(4x^2-8x+4+1\right)}\)\(=\frac{2}{-4\left(x+1\right)^2-1}\)
\(\ge\frac{2}{-1}=-2\)\(\Rightarrow P\ge-2\)
Dấu = khi \(x=-1\)
Vậy MinP=-2 khi x=-1
x2 - 4x + 2 = ( x2 - 4x + 4 ) - 2 = ( x - 2 )2 - 2 ≥ -2 ∀ x
Dấu "=" xảy ra <=> x = 2 . Vậy GTNN của bthuc = -2
x^2 - 4x + 2
= x^2 - 4x + 4 - 2
= ( x - 2 ) ^2 - 2
\(\left(x-2\right)^2\ge0\forall x\)
\(\left(x-2\right)^2-2\ge-2\)
Dấu = xảy ra khi và chỉ khi
x - 2 = 0
x = 0 + 2
x = 2
vậy min = -2 khi và chỉ khi x = 2
Bạn làm nhiều bài tập rồi quen dần với mấy dạng này ,chứ chỉ ra cách nào thì khó lắm
Thường thì biến đổi về. Dạng bình phương (cũng có những cách khác nhé)
Ví du:tim giá trị nhỏ nhất của:x^2+2x+2=(x+1)^2+1 lớn hơn hoặc bằng 1 với mọi x thuộc R
1) \(A=x\left(2x-3\right)=2x^2-3x\)
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1,5}{\sqrt{2}}+\frac{2,25}{2}-1,125\)
\(=\left(\sqrt{2}x-\frac{1,5}{\sqrt{2}}\right)^2-1,125\ge-1,125\)
Vậy \(A_{min}=-1,125\Leftrightarrow\sqrt{2}x-\frac{1,5}{\sqrt{2}}=0\)
\(\Leftrightarrow x=\frac{3}{4}\)
2) \(21^{10}-1=\left(21^5+1\right)\left(21^5-1\right)\)
Dễ thấy 215 - 1 có tận cùng 00
\(\Rightarrow21^5-1⋮100\)
Ta có 215 có tận cùng bằng 1 nên 215 + 1 chia hết cho 2
\(\Rightarrow\left(21^5+1\right)\left(21^5-1\right)⋮200\)
hay \(21^{10}-1⋮200\)
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
Bài của bạn phải là tìm GTLN chứ không phải GTNN nhé :) Và bạn cần thêm điều kiện a,b là các số dương nữa :)
Áp dụng bất đẳng thức Cauchy , ta có ; \(2=2a+b\ge2\sqrt{2a.b}\Rightarrow ab\le\frac{1}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a,b>0\\2a+b=2\\2a=b\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=1\end{cases}}\)
Vậy ab đạt giá trị lớn nhất bằng \(\frac{1}{2}\) tại \(\hept{\begin{cases}a=\frac{1}{2}\\b=1\end{cases}}\)