K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2020

A =(a+b-2c) -(-a+b+c) -(2a-b-c)

   = a+b-2c+a-b-c-2a+b+c

   = b-2c

B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)

  = -2a+b-c+b-2c-3a+5a+3c-b

  = b-c

C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)

  = a-b-2c-2b-3c+a+2a-3b

  = -6b-5c

D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)

   = 5a-3b+c+2a-3b+5-b+c-a

   = 6a-7b+2c

1 tháng 1 2021

\(A=\left(a+b-2c\right)-\left(-a+b+c\right)-\left(2a-b-c\right)\)

\(=a+b-2c+a-b-c-2a+b+c=b-2c\)

\(B=-\left(2a-b+c\right)+\left(b-2c-3a\right)-\left(-5a-3c+b\right)\)

\(=-2a+b-c+b-2c-3a+5a+3c-b=b\)

\(C=\left(3a-b-2c\right)-\left(2b+3c-a\right)+\left(2a-3b\right)\)

\(=3a-b-2c-2b-3c+a+2a-3b=6a-6b-5c\)

\(D=\left(5a-3b+c\right)+\left(2a-3b+5\right)-\left(b-c+a\right)\)

\(=5a-3b+c+2a-3b+5-b+c-a=6a-7b+2c\)

a) Thu gọn:

\(A=2.\left(a-b\right)-3.\left(2a+3b\right)\)

\(A=2a-2b-6a-9b\)

\(A=-4a-11b\)

Tính giá trị, thay a = -2; b = -3 vào biểu thứ ta có:

\(A=-4.\left(-2\right)-11.\left(-3\right)\)

\(A=8+33\)

\(A=41\)

b) Thu gọn:

\(B=\left(5a-3b\right)-\left(4a+26\right)-2a-b\)

\(B=5a-3b-4a-26-2a-b\)

\(B=-a-2b-26\)

Tính giá trị, thay a = -4; b = -2 vào biểu thứ ta có:

\(B=4-2.\left(-4\right)-26\)

\(B=-14\)

hok tốt!!

13 tháng 1 2019

a, ta có ab + 1 = 2a + 3b

\(\Leftrightarrow ab-2a-3b+6=5\)5

\(\Leftrightarrow\left(b-2\right)\left(a-3\right)=5\)

mà a , b là số nguyên tố 

Nên \(\left(b-2\right)\left(a-3\right)=1.5=5.1\)

<=>b-2=1 và a-3 = 5

hoặc b -2 = 5 và a- 3 = 1

giải nốt nha

13 tháng 1 2019

chắc câu a vô nghiệm

19 tháng 7 2016

\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)

\(a,=-2a+3b-4c+2a+3b+4c\)

\(=\left(-2a+2a\right)+\left(3b+3b\right)+\left(-4c+4c\right)\)

\(=0+\left(3b+3b\right)+0\)

\(=3b+3b=2.3b\)

\(b,\)Thay \(a=2012;b=-1;c=-2013\)vào biểu thức \(A\) ta có \(:\)

     \(A=\left[-2.2012+3.\left(-1\right)-4.\left(-2013\right)\right]\)\(-\left[-2.\left(2012\right)-3.\left(-1\right)-4.\left(-2013\right)\right]\)

    \(A=0\)

23 tháng 5 2018

a, n(n+1)(n+2)

nhận xét : 

n; n+1; n+2 là 3 số tự nhiên liên tiếp

=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3             (1)

ƯCLN(2;3) = 1   (2)

(1)(2) => n(n+1)(n+2) \(⋮\) 6

b, 3a + 5b \(⋮\) 8

=> 5(3a + 5b) \(⋮\) 8

=> 15a + 25b \(⋮\) 8

3(5a + 3b) = 15a + 9b

xét hiệu : 

(15a + 25b) - (15a + 9b)

= 15a + 25b - 15a - 9b

= (15a - 15a) + (25b - 9b)

= 0 + 16b

= 16b và (3;5) = 1

=> 5a + 3b \(⋮\) 8

c, làm tương tự câu b

3 tháng 1 2016

a) a+4b chia hết cho 7 thì 5a+20b cũng chia hết cho 7

vậy (5a+20b)-(5a+3b) chia hết cho 7 nên 17b chia hết cho7

vì 17 không chia hết cho7 nên b phải chia hết cho 7

5a+3b chia hết cho 7 thì 20a+12b cũng chia hết cho 7

a+4b chia hết cho 7 thì 3a +12b cũng chia hết cho 7

vậy (20a+12b)-(3a+12b) chia hết cho7 nên 17a chia hết cho7

vì 17 không chia hết cho7 nên a phải chia hết cho 7

vì a chia hết cho7 và b chia hết cho 7 nên a+4b chia hết cho 7

b) tương tự như câu a

tích mình nhé Kim Chi !