Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
Trước hết nên biết: và với a nguyên dương.
Do đó, ta thấy:
- . Tổng hai số chính phương chia 5 dư 2 nên cả hai số đều chia 5 dư 1, suy ra chia hết cho 5 nên
- Ta thấy là số chính phương lẻ, nên chỉ có thể . Như vậy , tức là số chính phương lẻ, nên mà (3,8)=1 nên
Vì (5,8)=1 nên 40|n.
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương
a là số tự nhiên >0. Giả sử m,n >0 thuộc Z để:
\(\hept{\begin{cases}2a+1=n^2\left(1\right)\\3a+1=m^2\left(2\right)\end{cases}}\)
Từ (1) => n lẻ; đặt n=2k+1, ta được
2a+1=4k2+4k+1=4k(k+1)+1
=> a=2k(k+1)
Vậy a chẵn
a chẵn => (3a+1) là số lử từ (2) => m lẻ; đặt m=2p+1
(1)+(2) được: 5a+2=4k(k+1)+1+4p(p+1)+1
=> 5a=4k(k+1)+4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
Xét các TH
+) a=5q+1 => n2=2a+1=10q+3 có chữ số tận cùng là 3 (vô lí)
+) a=5q+2 => m2=3a+1=15q+7 có chữ số tận cùng là 7 (vô lí)
+) a=5q+3 => n2=2a+1=10a+7 chữ số tận cùng là 7 (vô lí)
=> a chia hết cho 5
Mà (5;8)=1 => a chia hết cho 5.8=40 hay a là bội của 40
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
a+1 = x^2
2a+1 = y^2;
a phải chẵn vì 2a = y^2-1 = (y-1)(y+1) => 2a chia hết cho 8 vì y-1 va y+1 là tích của 2 số chẵn liên tiếp =>a chia hết cho 2.
a = (x-1)(x+1) vì a là số chẵn nên suy ra a chia hết cho 8 do x-1 và x+1 là tích của 2 số chẵn liên tiếp(dễ dàng cm).
bây h ta cần chứng minh x không chia hết cho 3.
Giả sữ x chia hết cho 3 => x = 3k;
2(a+1) -1 = 2(x-1)(x+1) -1 = 2(9k^2-1) -1 = 18k^2-3 => 2a+1 chia hết cho 3 vô lý vì ta có 2(a+1) chia hết cho 3 nhưng -1 không chia hết cho 3 => x không chia hết cho 3 hay hoặc x-1,hoặc x+1 chia hết cho 3 => điều phải chứng minh.
a+1 = x^2
2a+1 = y^2;
a phải chẵn vì 2a = y^2-1 = (y-1)(y+1) => 2a chia hết cho 8 vì y-1 va y+1 là tích của 2 số chẵn liên tiếp =>a chia hết cho 2.
a = (x-1)(x+1) vì a là số chẵn nên suy ra a chia hết cho 8 do x-1 và x+1 là tích của 2 số chẵn liên tiếp(dễ dàng cm).
bây h ta cần chứng minh x không chia hết cho 3.
Giả sữ x chia hết cho 3 => x = 3k;
2(a+1) -1 = 2(x-1)(x+1) -1 = 2(9k^2-1) -1 = 18k^2-3 => 2a+1 chia hết cho 3 vô lý vì ta có 2(a+1) chia hết cho 3 nhưng -1 không chia hết cho 3 => x không chia hết cho 3 hay hoặc x-1,hoặc x+1 chia hết cho 3 => điều phải chứng minh.
a,
A = 2 + 22 + 23 +...+210
A = (2 + 22 ) + (23 +24 ) + ...+ (29 + 210 )
A = 2 ( 1+2 ) + 23(1+2 ) + ...+ 29(1+2)
A = 2 .3 + 23 .3 + ...+29.3
A = 3 ( 2+ 23 + ...+ 29 ) \(⋮\) 3 3
Vậy A \(⋮\) 3
b, A = 2 + 22 + 23 +...+210
A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 )
A = 2 ( 1+2+22 + 23 + 24 ) + 26(1+2+22 + 23 + 24)
A = 2 . 31 + 26 .31
A = 31(2+26 ) \(⋮\) 31
vậy A \(⋮\) 31
d , A = 2 + 22 + 23 +...+210