
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
a). Ta có: a < b
=> -6a > -6b
mà 3 > 1
=> \(3-6a>1-6b\)
b)
Ta có: a < b
=> a - 2 < b - 2
=> \(7\left(a-2\right)< 7\left(b-2\right)\)
c)
Ta có: a < b
=> -2a > -2b
=> 1 - 2a > 1 - 2b
\(\Rightarrow\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)

\(2a^2+b^2=3ab\Leftrightarrow2a^2-3ab+b^2=0\Leftrightarrow\left(2a-b\right)\left(a-b\right)=0\)
\(\Leftrightarrow a-b=0\left(2a-b>0\right)\Leftrightarrow a=b\)
\(P=\frac{3a^2+2a^2}{5a^2-3a^2}=\frac{5a^2}{2a^2}=\frac{5}{2}\)

2
a
\(\left|2x+7\right|+\left|2x-1\right|=\left|2x+7\right|+\left|1-2x\right|\ge\left|2x+7+1-2x\right|=8\)
Dấu "=" xảy ra tại \(-\frac{7}{2}\le x\le\frac{1}{2}\)
3
\(3a^2+4b^2=7ab\)
\(\Leftrightarrow3a^2-7ab+4b^2=0\)
\(\Leftrightarrow\left(3a^2-3ab\right)+\left(4b^2-4ab\right)=0\)
\(\Leftrightarrow3a\left(a-b\right)-4b\left(a-b\right)=0\)
\(\Leftrightarrow\left(3a-4b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\3a=4b\end{cases}}\)
Làm nốt

Ta có : \(a-b=7\Rightarrow a=b+7\)
Thay \(a=b+7\) vào biểu thức B ta được :
\(B=\dfrac{3\left(7+b\right)-b}{2\left(7+b\right)+7}+\dfrac{3b-\left(7+b\right)}{2b-7}\)
\(=\dfrac{21+3b-b}{14+2b+7}+\dfrac{3b-7-b}{2b-7}\)
\(=\dfrac{2b+21}{2b+21}+\dfrac{2b-7}{2b-7}\)
\(=1+1=3\)
Vậy \(B=2\)

Từ \(a-2b=5\Rightarrow a=5+2b\) thay vào P ta có:
\(P=\frac{3\left(2b+5\right)-2b}{2\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b+5}{b-5}\)
\(=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)
A = 5 a − 2 a − 7 3 a + 7 + 3 2 a − 7 − 2 a 2 2 a − 7 − 7