Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
+) a/2=b/3
=>a=2b/3
+) b/5=c/4
=>c=4b/5
Lại có:
a-b+c=49
=> 2b/3 -b + 4b/5 =49
=> 7b/15==49
=> b= 105
Khi đó:
+) a=2b/3=2.105/3=70
+)c=4b/5=4.105/5=84
Vậy a=70; b=105; c=84...
chúc bạn học tốt
Sau khi thực hiện phép tính ta được kết quả các giá trị:
\(A=\dfrac{1}{3}\) \(B=-5\dfrac{5}{12}\) \(C=-0,22\)
Sắp xếp: \(-5\dfrac{5}{12}< -0,22< \dfrac{1}{3}\) tức là \(B< C< A\)
Khi tính xong giá trị biểu thức A , B và C ta được kết quả như sau :
\(A=\dfrac{1}{3}\) ; \(B=-5\dfrac{5}{12}\); \(C=-0,22\)
Sắp xếp : \(B< C< A\)\(\left(-5\dfrac{5}{12}< -0,22< \dfrac{1}{3}\right)\)
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
Giải:
Ta có: \(\dfrac{a}{b}=\dfrac{3}{4}\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
\(\dfrac{2a-5b}{a-3b}=\dfrac{6k-20k}{3k-12k}=\dfrac{-24k}{-9k}=\dfrac{24}{9}=\dfrac{8}{3}\)
Vậy \(\dfrac{2a-5b}{a-3b}=\dfrac{8}{3}\)
Câu 1:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a^2}{c^2}=\dfrac{b^2k^2}{d^2k^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{2a^2+3b^2}{2c^2+3d^2}=\dfrac{2b^2k^2+3b^2}{2d^2k^2+3d^2}=\dfrac{b^2}{d^2}\)
=>\(\dfrac{a^2}{c^2}=\dfrac{2a^2+3b^2}{2c^2+3d^2}\)
b: \(\dfrac{2a-3c}{c}=\dfrac{2bk-3dk}{dk}=\dfrac{2b-3d}{d}\)
\(A=\dfrac{5}{4}\left(5-\dfrac{4}{3}\right)\left(-\dfrac{1}{11}\right)\)
\(A=\dfrac{5}{4}.\dfrac{11}{3}.\left(-\dfrac{1}{11}\right)\)
\(A=-\dfrac{5}{12}\)
\(B=\dfrac{3}{4}:\left(-12\right).\left(-\dfrac{2}{3}\right)\)
\(B=\dfrac{3}{4}.\left(-\dfrac{1}{12}\right).\left(-\dfrac{2}{3}\right)\)
\(B=\dfrac{1}{24}\)
\(C=\dfrac{5}{4}:\left(-15\right).\left(-\dfrac{2}{5}\right)\)
\(C=\dfrac{5}{4}.\left(-\dfrac{1}{15}\right).\left(-\dfrac{2}{5}\right)\)
\(C=\dfrac{1}{30}\)
\(D=\left(-3\right)\left(\dfrac{2}{3}-\dfrac{5}{4}\right):\left(-7\right)\)
\(D=\left(-3\right)\left(-\dfrac{7}{12}\right)\left(-\dfrac{1}{7}\right)\)
\(D=-\dfrac{1}{4}\)
Sắp xếp theo thứ tự tăng dần:
\(A,D,C,B\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a-3b}{2a+3b}=\dfrac{2bk-3b}{2bk+3b}=\dfrac{2k-3}{2k+3}\)
\(\dfrac{2c-3d}{2c+3d}=\dfrac{2dk-3d}{2dk+3d}=\dfrac{2k-3}{2k+3}\)
Do đó: \(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
Do đó: \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
A=\(\dfrac{5}{4}\).(5-\(\dfrac{4}{3}\)).(\(-\dfrac{1}{11}\))
= \(\dfrac{5}{4}\).\(\dfrac{11}{3}\).(\(-\dfrac{1}{11}\))
=\(\dfrac{5}{4}\).[\(\dfrac{11}{3}.\left(-\dfrac{1}{11}\right)\text{]}\)
=\(\dfrac{5}{4}.\dfrac{1}{3}\)
=\(\dfrac{5}{12}\) (1)
B=\(\dfrac{3}{4}:\left(-12\right).\left(-\dfrac{2}{3}\right)\) =\(\dfrac{3}{4}:\text{[}\left(-12\right).\left(-\dfrac{2}{3}\right)\text{]}\)
=\(\dfrac{3}{4}:8\) =\(\dfrac{3}{4}.\dfrac{1}{8}\)=\(\dfrac{3}{32}\)(2)
C=\(\dfrac{5}{4}:\left(-15\right).\left(-\dfrac{2}{5}\right)\) =\(\dfrac{5}{4}:\text{[}\left(-15\right).\left(-\dfrac{2}{5}\right)\text{]}\)
=\(\dfrac{5}{4}:6=\dfrac{5}{4}.\dfrac{1}{6}=\dfrac{5}{24}\left(3\right)\)
D=(-3).\(\left(\dfrac{2}{3}-\dfrac{5}{4}\right):\left(-7\right)\) =(-3).\(\left(-\dfrac{7}{12}\right)\):(-7)=\(\dfrac{7}{4}:\left(-7\right)\)=\(\dfrac{7}{4}\).\(\left(\dfrac{-1}{7}\right)\)=\(\dfrac{-1}{4}\) (4)
Từ (1),(2),(3)và(4)=>Ta có thể sắp xếp các kết quả trên theo thứ tự tăng dần là:
(Bạn tự làm nhé! mình bận đi học rồi)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a-3b}{2a+3b}=\dfrac{2bk-3b}{2bk+3b}=\dfrac{2k-3}{2k+3}\)
\(\dfrac{2c-3d}{2c+3d}=\dfrac{2dk-3d}{2dk+3d}=\dfrac{2k-3}{2k+3}\)
=>\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
c: \(\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left(\dfrac{b}{d}\right)^4\)
\(\dfrac{a^4+b^4}{c^4+d^4}=\dfrac{b^4k^4+b^4}{d^4k^4+d^4}=\dfrac{b^4}{d^4}\)
Do đó: \(\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\)
\(a,A=\dfrac{7}{35}+\left(-1\dfrac{3}{4}+\dfrac{12}{7}\right)-\left(\dfrac{1}{4}-\dfrac{2}{7}-\dfrac{12}{35}\right)-\dfrac{3}{7}\)\(A=\dfrac{7}{35}-\dfrac{7}{4}+\dfrac{12}{7}-\dfrac{1}{4}+\dfrac{2}{7}+\dfrac{13}{35}-\dfrac{3}{7}\\ A=\left(\dfrac{7}{35}+\dfrac{13}{35}\right)-\left(\dfrac{7}{4}-\dfrac{1}{4}\right)+\left(\dfrac{12}{7}+\dfrac{2}{7}-\dfrac{3}{7}\right)\)
\(A=\dfrac{4}{7}-\dfrac{3}{2}+\dfrac{11}{7}\\ A=\left(\dfrac{4}{7}+\dfrac{11}{7}\right)-\dfrac{3}{2}\\ A=\dfrac{15}{7}-\dfrac{3}{2}=\dfrac{9}{14}\)
\(2a-b=\dfrac{2}{3}\left(a+b\right)\)
\(3\left(2a-b\right)=2\left(a+b\right)\)
\(6a-3b=2a+2b\)
\(4a=5b\)
\(a=\dfrac{5}{4}b\)
Thay vào A ta được:
\(A=\dfrac{\left(\dfrac{5}{4}b\right)^4+5^4}{b^4+4^4}=\dfrac{\dfrac{5^4}{4^4}\left(b^4+4^4\right)}{b^4+4}=\dfrac{5^4}{4^4}\)