Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Ta có : \(6a+9b=3.\left(2a+3b\right)\)(đặt 3 làm thừa số chung )
Vì \(3⋮3\)
\(\Leftrightarrow3.\left(2a+3b\right)⋮3\left(đpcm\right)\)
2)
Ta có : \(2a+4b=2a+2b+2b⋮3\)
\(4a+2b=2a+2a+2b\)
Vì \(\hept{\begin{cases}2a⋮3\\2b⋮3\end{cases}}\Rightarrow2a+2a+2b⋮3\Leftrightarrow\left(4a+2b\right)⋮3\)
3)
Ta có : \(\overline{aaa}=a.111=a.3.37\)
Vì 37 chia hết cho 37
<=> a.3.37 chia hết cho 37
<=> \(\overline{aaa}⋮37\)
Ta có
a - b chia hết cho 7
=> 4( a - b ) chia hết cho 7
=> 4a - 4b chia hết cho 7
=> 4a - 7b + 3b chia hết cho 7
=> 4a + 3b - 7b chia hết cho 7
Vì - 7b chia hết cho 7
=> 4a + 3b chia hết cho 7
Vậy khi a - b chia hết cho 7 thì 4a + 3b chia hết cho 7
\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))
\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)
\(\Leftrightarrow\left(4a+5b\right)⋮23\)
Do ta biến đổi tương đương nên điều ngược lại cũng đúng.
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).
Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).
c) 1. 10n+2 \(⋮\)2n-1
=> 5(2n-1) +7 \(⋮\)2n-1 => 7\(⋮\)2n-1
2. 2n+3\(⋮\)n-2
=> 2(n-2) +7\(⋮\)n-2 => 7\(⋮\)n-2
3. 3n+1 \(⋮\)11-2n
=> 6n+2 \(⋮\)2n-11
=> 3(2n-11) +35\(⋮\)2n-11
=> 35\(⋮\)2n-11
a) vì chia 4 dư 2 nên \(\overline{5b}\)chia 4 dư 2 => b là 0 ; 4 ; 8
nếu b =0 thì 4+3+a+5+0 = 12 +a chia 9 dư 2 => a=8
nếu b =4 thì 4+3+a+5+4 = 16 +a chia 9 dư 2 => a=4
nếu b = 8 thì 4+3+a+5+8 = 20+a chia 9 dư 2 => a = 0 hoặc a=9
cũng 3 năm r chưa lm nên k biết có đúng k
Ta có : 3a + 11b chia hết cho 17
13( 3a + 11b ) chia hết cho 17
Hay : 39a + 143b chia hết cho 17
Mà : 34a + 136b chia hết cho 17
Suy ra : (39a+143b)-(34a+136b)=5a+7b chia hết cho 17
Bạn tự chứng minh theo chiều ngược lại nhé !
\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)
\(\Rightarrow4\left(3a+2b\right)⋮17\)
\(\Rightarrow12a+8b⋮17\)
\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)
\(\text{#Not_chắv_:)}\)
a. Ta có :
2(10a + b) - (3a+2b)
= 20a+2b-3a-2b
= 17a
Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17
=> 2( 10a+b) - (3a+2b) \(\vdots\) 17
Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17
Mà (2,17)=1 => 10a+b \(\vdots\) 17
Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17
b. Câu b cx tương tự nha
ta có: 2a + 7b chia hết cho 3
=> 4a + 14b chia hết cho 3
4a + 2b + 12b chia hết cho 3
mà 12b chia hết cho 3
=> 4a + 2b chia hết cho 3 (đpcm)
\(=>2a+7b+4a+2b=6a+9b=3.\left(2b+3b\right)⋮3\)
\(2a+7b⋮3,6a+9b⋮3\)
\(=>4a+2b⋮3\left(dpcm\right)\)