\(⋮\)3 ( a,b \(\in\)N). Chứng minh rằng (4a + 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

ta có: 2a + 7b chia hết cho 3

=> 4a + 14b chia hết cho 3

4a + 2b + 12b chia hết cho 3

mà 12b chia hết cho 3

=> 4a + 2b chia hết cho 3 (đpcm)

19 tháng 10 2018

\(=>2a+7b+4a+2b=6a+9b=3.\left(2b+3b\right)⋮3\)

\(2a+7b⋮3,6a+9b⋮3\)

\(=>4a+2b⋮3\left(dpcm\right)\)

10 tháng 12 2017

1)

Ta có : \(6a+9b=3.\left(2a+3b\right)\)(đặt 3 làm thừa số chung )

Vì \(3⋮3\)

\(\Leftrightarrow3.\left(2a+3b\right)⋮3\left(đpcm\right)\)

2)

Ta có : \(2a+4b=2a+2b+2b⋮3\)

            \(4a+2b=2a+2a+2b\)

Vì \(\hept{\begin{cases}2a⋮3\\2b⋮3\end{cases}}\Rightarrow2a+2a+2b⋮3\Leftrightarrow\left(4a+2b\right)⋮3\)

3)

Ta có : \(\overline{aaa}=a.111=a.3.37\)

Vì 37 chia hết cho 37

<=> a.3.37 chia hết cho 37

<=> \(\overline{aaa}⋮37\)

6 tháng 2 2019
Ai làm nhanh và đúng nhất mình k cho! Thank you so much! :>
6 tháng 2 2019

Ta có  

a - b chia hết cho 7

=> 4( a - b ) chia hết cho 7

=> 4a - 4b chia hết cho 7

=> 4a - 7b + 3b chia hết cho 7

=> 4a + 3b - 7b chia hết cho 7 

Vì - 7b chia hết cho 7

=> 4a + 3b chia hết cho 7

Vậy khi a - b chia hết cho 7 thì 4a + 3b chia hết cho 7

DD
7 tháng 11 2021

\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))

\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)

\(\Leftrightarrow\left(4a+5b\right)⋮23\)

Do ta biến đổi tương đương nên điều ngược lại cũng đúng. 

DD
7 tháng 11 2021

\(S=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)

\(S=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).

Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).

11 tháng 10 2017

c) 1. 10n+2 \(⋮\)2n-1

=> 5(2n-1) +7 \(⋮\)2n-1   => 7\(⋮\)2n-1

    2. 2n+3\(⋮\)n-2

=> 2(n-2) +7\(⋮\)n-2      => 7\(⋮\)n-2

    3. 3n+1 \(⋮\)11-2n

=> 6n+2 \(⋮\)2n-11

=> 3(2n-11) +35\(⋮\)2n-11

=> 35\(⋮\)2n-11

11 tháng 10 2017

a) vì chia 4 dư 2 nên \(\overline{5b}\)chia 4 dư 2 => b là 0 ; 4 ; 8

nếu b =0 thì 4+3+a+5+0 = 12 +a chia 9 dư 2 => a=8

nếu b =4 thì 4+3+a+5+4 = 16 +a chia 9 dư 2 => a=4

nếu b = 8 thì 4+3+a+5+8 = 20+a chia 9 dư 2 => a = 0 hoặc a=9

cũng 3 năm r chưa lm nên k biết có đúng k

9 tháng 7 2019

Ta có : 3a + 11b chia hết cho 17

       13( 3a + 11b ) chia hết cho 17

Hay : 39a + 143b chia hết cho 17

Mà : 34a + 136b chia hết cho 17

Suy ra : (39a+143b)-(34a+136b)=5a+7b chia hết cho 17

Bạn tự chứng minh theo chiều ngược lại nhé !

5 tháng 2 2020

\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)

  \(\Rightarrow4\left(3a+2b\right)⋮17\)

\(\Rightarrow12a+8b⋮17\)

\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)

\(\Rightarrow10a+b⋮17\)

\(\text{#Not_chắv_:)}\)

5 tháng 2 2020

a. Ta có :

    2(10a + b) - (3a+2b)

= 20a+2b-3a-2b

= 17a

Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17

                => 2( 10a+b) - (3a+2b) \(\vdots\) 17

Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17

 Mà (2,17)=1 => 10a+b \(\vdots\) 17

Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17

b. Câu b cx tương tự nha

4 tháng 10 2018

Ta có:2a+4b

       =2a+2x2b

       =2(a+2b)

=>2a+4b chia hết cho 2

11 tháng 3 2015

làm câu 2 đi. Tớ nghĩ mãi không ra