\(20^n\):\(5^n\)=\(4^{ }\)thì...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

a) \(\frac{16}{2^3}\)=2

b) \(\frac{\left(-3\right)^7}{81}\)=-27

c)8: 2=4

22 tháng 9 2019

a) 9.27n = 35

=> 32.33n = 35

=> 32 + 3n = 35

=> 2 + 3n = 5

=> 3n = 5 -  2

=> 3n = 3

=> n = 1

b) (23 : 4).2n = 4

=> 2.2n = 4

=> 2n = 4 : 2

=> 2n = 2

=> n = 1

c) 3-2.34 . 3n = 37

=> 3-2 + 4 + n = 37

=> 32 + n = 37

=> 2 + n = 7

=> n = 7 - 2 = 5

d) 2-1.2n + 4.2n = 9.25

=> (1/2 + 4).2n = 9.25

=> 9/2.2n = 9.25

=> 2n = 9.25 : 9/2

=> 2n = 26

=> n = 6

22 tháng 9 2019

\(a,9\cdot27^n=3^5\)

\(\Rightarrow9\cdot27^n=243\)

\(\Rightarrow27^n=243:9=27\)

\(\Rightarrow27^n=27^1\)

\(\Rightarrow x=1\)

\(b,\left(2^3:4\right)\cdot2^n=4\)

\(\Rightarrow\left(8:4\right)\cdot2^n=4\)

\(\Rightarrow2\cdot2^n=4\)

\(\Rightarrow2^n=4:2=2\)

\(\Rightarrow n=1\)

\(c,3^{-2}\cdot3^4\cdot3^n=3^7\)

\(\Rightarrow3^2\cdot3^n=3^7\)

\(\Rightarrow3^n=3^7:3^2=3^5\)

\(\Rightarrow n=5\)

\(d,2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot32\)

\(\Rightarrow2^n\cdot\frac{9}{2}=288\)

\(\Rightarrow2^n=288:\frac{9}{2}=64\)

\(\Rightarrow2^n=2^6\)

\(\Rightarrow n=6\)

2 tháng 4 2017

Mình bổ sung thêm cho đề bài 2 là CMR với n thuộc N*

5 tháng 3 2017

a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)

Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).

b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)

\(25⋮25\)

nên \(\left(3^n+2^n\right)\times25⋮25\)

Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).

22 tháng 10 2017

Câu 1 : Đáp án B

Câu 2 :Đáp án C

Câu 3 : Đáp án D

22 tháng 10 2017

Câu 1 : \(B.\dfrac{11}{20}\)

Câu 2 : \(C.\dfrac{-1}{2}\)

Câu 3 : C . 5 và -5

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

30 tháng 11 2017

a) ta có:

\(n^2+1⋮n+1\)

\(\Rightarrow\left(n^2-1\right)+2⋮n+1\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in\left\{-1;1;-2;2\right\}\)

\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)

10 tháng 4 2018

a) \(10^{n+1}-6.10^n\)

\(=10^n.10-6.19^n\)

\(=10^n.\left(10-6\right)\)

\(=10^n.4\)

b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)

\(=2^n.2^3+2^n.2^2-2^n.2+2^n.1\)

\(=2^n.\left(2^3+2^2-2+1\right)\)

\(=2^n.11\)

c) \(90.10^k-10^{k+2}+10^{k+1}\)

\(=90.10^k-10^k.10^2+10^k.10\)

\(=10^k.\left(90-10^2+10\right)\)

\(=0\)

d) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)

\(=\dfrac{2,5.5^n.10}{5^3}+5^n-\dfrac{6.5^n}{5}\)

\(=\dfrac{5^n}{5}+5^n-\dfrac{6.5^n}{5}\)

\(=\dfrac{5^n+5^{n+1}-6.5^n}{5}=\dfrac{5^n+5^n.5-6.5^n}{5}=\dfrac{5^n\left(1+5-6\right)}{5}=\dfrac{0}{5}=0\)