Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này xuất hiện trong câu cuối đề GKI năm ngoái của mình :v
-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{2020}=\dfrac{c}{2022}=\dfrac{a-c}{2020-2022}=\dfrac{a-c}{-2}\\\dfrac{a}{2020}=\dfrac{b}{2021}=\dfrac{a-b}{2020-2021}=\dfrac{a-b}{-1}\\\dfrac{c}{2022}=\dfrac{b}{2021}=\dfrac{c-b}{2022-2021}=c-b\end{matrix}\right.\)
\(\Rightarrow c-b=-\left(a-b\right)=\dfrac{a-c}{-2}\)
\(\Rightarrow\left\{{}\begin{matrix}a-c=-2\left(c-b\right)\\a-b=-\left(c-b\right)\end{matrix}\right.\)
\(\left(a-c\right)^3+8\left(a-b\right)^2.\left(c-b\right)=\left[-2\left(c-b\right)\right]^3+8\left[-\left(c-b\right)\right]^2.\left(c-b\right)=-8\left(c-b\right)^3+8\left(c-b\right)^3=0\left(đpcm\right)\)
A=1/2^2+1/3^2+...+1/2022^2<1-1/2+1/2-1/3+...+1/2021-1/2022<1
mà A>0
nên 0<A<1
=>A ko là số tự nhiên
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
Ta có : \(A.m=\frac{m\left(m^{2020+1}\right)}{m^{2021}-1}=\frac{m^{2021}+m}{m^{2021}-1}=1+\frac{m-1}{m^{2021}+1}\)
Tương tự ,ta có : \(B.m=1+\frac{m-1}{m^{2022}+1}\)
//Đề thiếu điều kiện của m nên không giải tiếp được =))
\(A=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{2022-1}{2022!}\)
\(=\dfrac{2}{2!}+\dfrac{3}{3!}+\dfrac{4}{4!}+...+\dfrac{2022}{2022!}-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2022!}\right)\)
\(=1+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{2021!}-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{2021!}+\dfrac{1}{2022!}\right)\)
\(=1-\dfrac{1}{2022!}\)
Giả sử tất cả các số đã cho đều lẻ
=>Quy đồng, ta được:
\(A=\dfrac{\left(a_2\cdot a_3\cdot...\cdot a_{2022}\right)+\left(a_1\cdot a_3\cdot...\cdot a_{2021}\cdot a_{2022}\right)+...+\left(a_1\cdot a_2\cdot...\cdot a_{2021}\right)}{a_1\cdot a_2\cdot...\cdot a_{2022}}=1\)
Tử có 2022 số hạng, mẫu là số lẻ
=>A là số chẵn khác 1
=>Trái GT
=>Phải có ít nhất 1 số là số chẵn