Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2015}}{a_{2016}}=\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\)
=> \(\left(\frac{a_1}{a_2}\right)^{2015}=\left(\frac{a_2}{a_3}\right)^{2015}=...=\left(\frac{a_{2015}}{a_{2016}}\right)^{2015}=\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1.a_2...a_{2015}}{a_2.a_3...a_{2016}}=\frac{a_1}{a_{2016}}\)
=> \(\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1}{a_{2016}}\)(Đpcm)
Hoàng Lê Bảo Ngọc, Trương Hồng Hạnh, Trần Việt Linh, Nguyễn Huy Tú
Giải:
Ta có: \(\frac{a_1}{a_{2018}}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2017}}{a_{2018}}=-5^{2017}\)
Mà \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2017}}{a_{2018}}\)
\(\Rightarrow\frac{a_1}{a_2}=-5\)
\(S=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}=\frac{a_1}{a_2}=-5\)
Vậy S = -5
Mn xem t lm đúng khống nhé! T không chắc lắm
Ta có :
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)
Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_2}=-5\) \(\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow S=5\)
Vậy : \(S=5\)
Ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2015}}{a_{2016}}=\frac{a_{2016}}{a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=k\)
\(\Rightarrow\frac{a_1^{2016}}{a_2^{2016}}=\frac{a_2^{2016}}{a_3^{2016}}=...=\frac{a_{2016}^{2016}}{a_{2017}^{2016}}=\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=k^{2016}\left(1\right)\)
Ta lại có:
\(k^{2016}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\frac{a_1}{a_{2017}}\left(2\right)\)
Từ (1) và (2) \(\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=\frac{a_1}{a_{2017}}\)