Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong sách nâng cao và phất triển 1 số chuyên đề toàn 9 tập 1 có đó
giả sử trong 36 số tự nhiên đã cho, không có hai số nào bằng nhau. Không mất tính tổng quát, giả sử :
\(a_1< a_2< ...< a_{36}\)
Suy ra : \(a_1\ge1;a_2\ge2;...;a_{36}\ge36\)
\(\Rightarrow\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{36}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{36}}\)( 1 )
Ta có : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{36}}=1+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{36}}\)
\(< 1+\frac{2}{\sqrt{2}+\sqrt{1}}+\frac{2}{\sqrt{3}+\sqrt{2}}+...+\frac{2}{\sqrt{36}+\sqrt{35}}\)
\(=1+2\left(\sqrt{2}-\sqrt{1}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{36}-\sqrt{35}\right)\)
\(=2\left(\sqrt{36}-\sqrt{1}\right)+1=11\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{36}}}< 11\)( trái với giả thiết )
\(\Rightarrow\)tồn tại 2 số bằng nhau trong 36 số tự nhiên đã cho
chứng minh = phản chứng . giả sử trong 25 số tự nhiên ko có 2 số nào bằng nhau . ko mất tính tổng quát , giả sử\(a_11,a_22,..,a_{25}25\)
thế thì
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{25}}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..+\frac{1}{\sqrt{25}}\)
ta lại có \(\frac{1}{\sqrt{25}}+..+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{1}}=\frac{1}{\sqrt{25+\sqrt{25}}}+\frac{1}{\sqrt{2+\sqrt{2}}}+1\)
\(< \frac{2}{\sqrt{24+\sqrt{24}}}+.+\frac{2}{\sqrt{2+\sqrt{2}}}+1\)
\(=2\left(\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{25}-\sqrt{1}\right)+1=9\left(2\right)\)
từ (1) zà 2 suy ra \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..+\frac{1}{\sqrt{a_{25}}}< 9\)trái zới giả thiết , suy ra ko tồn tại 2 số nào = nhau trong 25 số
Ta phản chứng rằng không tồn tại 2 số nào bằng nhau trong 25 số trên, đồng nghĩa với 25 số trên là phân biệt, ta sắp xếp chúng theo thứ tự $a_1<a_2<...<a_25$, có thể thấy rằng, bộ số $1,2,...25$ chính là bộ số mà giá trị của vế trái lớn nhất, nhưng giá trị lúc này có thể tính được là xấp xỉ 8,6<9 nên không thỏa mãn, các bộ số khác hiển nhiên cũng sẽ khiến vế trái nhỏ hơn 9, vậy không tồn tại bộ số nào thỏa mãn nếu chúng phân biệt, ta có điều phải chứng minh
Vì \(a_1,a_2,....,a_{2015}\)là các số nguyên dương, để không mất tính tổng quát ta giả sử \(a_1\le a_2\le a_3\le.....\le a_{2015}\)Suy ra
\(a_1\ge1,a_2\ge2,.......,a_{2015}\ge2015\) Vậy ta có \(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..........+\frac{1}{\sqrt{a_{2015}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{2015}}=B\)
\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2015}}<1+\frac{2}{\sqrt{2}+\sqrt{1}}+\frac{2}{\sqrt{3}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2014}}=C\)
Ta có trục căn thức ở mẫu của \(C\)Ta có: \(C=2\left(\sqrt{2015}-\sqrt{2014}+\sqrt{2014}-\sqrt{2013}+.....+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{2015}-\sqrt{1}\right)+1\)
Mà: \(C=2\left(\sqrt{2015}-\sqrt{1}\right)+1<89\)Trái với giả thiết Vậy tồn tại ít nhất 2 số bằng nhau trong 2015 số nguyên dương đó
http://olm.vn/thanhvien/phantuananhlop9a1