Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)
\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)
Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết
Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100
a) Giả sử không có 2 số nào bằng nhau trong các số nguyên dương đẫ cho.
Không mất tính tổng quát ta giả sử: \(a1< a2< a3< a4< ...< a100\)
Nên : \(a1\ge1;a2\ge2;a3\ge3;...;a100\ge100\)
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
Mặt khác, ta có : \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< \frac{1}{1}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+99.\frac{1}{2}=\frac{101}{2}\)
( \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)có 99 phân số 1/2 )
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{101}{2}\)trái với đề bài ra là \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\ge\frac{101}{2}\)
Vậy tồn tại trong 100 số đã cho ít nhất 2 số bằng nhau ( điều phải chứng minh ).
b) Giả sử trong 100 số trên chỉ tồn tại 2 số bằng nhau ( đã chứng minh 2 số bằng nhau ở phần a)
Không mất tính tổng quát, ta giả sử:
b) Làm tiếp : Giả sử a1=a2.
Nên : \(a1=a2>a3>a4>...>a100\)( áp dụng theo phần a)
\(\Rightarrow a1=a2\ge1;a3\ge2;a4\ge3;...;a100\ge99\)
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{2}{a1}+\frac{1}{a3}+...+\frac{1}{a100}=\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}\)
Mặt khác, ta có :\(\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}< 2+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}=\frac{5}{2}+\frac{97}{3}=\frac{209}{6}\)
( \(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}< \frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)có 97 phân số 1/3 )
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{209}{6}< \frac{303}{6}=\frac{101}{2}\)trái với đề bài
Tương tự giả sử lấy bất kỳ 2 số bằng nhau khác tổng \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\)vẫn nhỏ hơn 101/2
Vậy tồn tại trong 100 số đã cho có ít nhất 3 số bằng nhau ( điều phải chứng minh).
Theo t/c dãy tỉ số=nhau:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.....\frac{a_9}{a_{10}}=\frac{a_{10}}{a_1}=\frac{a_1+a_2+....+a_{9+}a_{10}}{a_2+a_3+.....+a_{10}+a_1}=1\)
\(=>a_1=a_2;a_2=a_3;.......a_{10}=a_1=>a_1=a_2=a_3=....=a_{10}\)
Vậy ta có đpcm