Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử 2004 số đã cho là:
a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2003bé hơn hoặc bằng a2004
Vì tích 3 số bất kỳ luôn luôn dương
nên trong dãy số có nhiều nhất 2 số âm
a1;a2 <0
ta có: a1.a2003.a2004 <0
mà đề cho:a1.a2003.a2004>0
a1;a2 không thể âm
Do vậy 2004 số đã cho phải là số dương
giả sử 2004 số đã cho là:
a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2003bé hơn hoặc bằng a2004
Vì tích 3 số bất kỳ luôn luôn dương
nên trong dãy số có nhiều nhất 2 số âm
a1;a2 <0
ta có: a1.a2003.a2004 <0
mà đề cho:a1.a2003.a2004>0
a1;a2 không thể âm
Do vậy 2004 số đã cho phải là số dương
Chia 2004 số thành 668 nhóm , mỗi nhóm 3 số
Vì tích của 3 số bất kỳ là 1 số dương nên tích các số trong mỗi nhóm là 1 số dương
=> tích của 668 nhóm là một số dương hay tích của 2004 đều là dương (ĐPCM)
cô gợi ý em nhé !
Gọi 2004 số đó lần lượt là : \(a_1,a_2,a,_3......,a_{2004}\)
ta có \(a_1a_{ }_2a_3< 0,a_2a_{ }_3a_4< 0,a_1_{ }a_4a_5< 0\Rightarrow\left(a_{ }_1a_{ }_2a_3\right)\left(a_2_{ }a_{ }_3a_4\right)\left(a_{ }_1_{ }a_{ }_4a_5\right)< 0
\)
\(\Leftrightarrow\left(a_1\right)^2\left(a_2\right)^2\left(a_3\right)^2.a_5< 0\Rightarrow a_{ }_5< 0\)
Tương tụ như vậy chúng ta sẽ chứng minh các số còn lại nhỏ hơn 0.
vậy tích của 2004 số đó dương (tích của một số chẵn các số âm ).
a) Gọi 2014 số hữu tỉ là a1;a2;...;a2014. Trong a1;a2;..;a2014có ít nhất 1 số âm. Gọi số đó là a1 (1)
Ta chia a2;a3;...;a2014 vào 671 nhóm,mỗi nhóm 3 thừa số. Theo bài ra ta có: a2.a3.a4 là số âm; a5.a6.a7 là số âm;....; a2012.a2013.a2014 là số âm. Nên suy ra a2.a3....a2013.a2014 là số âm. Gọi số âm đó là k (2)
Từ (1) và (2) suy ra k.a1=n la số dương (n thuộc N*; k;a1 là số âm).
Vậy tích của 2014 sở hữu tỷ là số dương
b) làm theo thứ tự tăng dần