Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề 2 vòi nước cùng chảy vào 1 bể nước cạn sau 1 giờ 3 phút (sai mk sửa thành 1 giờ 30 phút )thì đầy bể. Nếu mở riêng từng vòi, thì vòi thứ 1 chảy đầy bể chậm hơn vòi thứ 2 là 2 giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu thì đầy bể
Trong 1 giờ hai vòi cùng chảy vào bể được số phần bể là :
1 : 1,5 = 2/3 (bể)
Trong 1 giờ vòng thứ nhất chậm ơn vòi thứ hai là :
1 : 2 = 1/2 (bể)
Trong một giờ vòi thứ nhất chảy được số phần bể là :
(2/3 - 1/2) : 2= 1/12 (bể)
Trong một giờ vòi thứ hai chảy được số phần bể là :
2/3 - 1/12 = 7/12 (bể)
Nếu mở riêng vòi thứ nhất thì sâu số thời gian đầy bể là :
1 : 1/12 = 12 (giờ)
Nếu mở riêng vòi thứ hai thì sâu số thời gian đầy bể là :
1 : 7/12 = 12/7 (giờ)
Đáp số : 12 giờ ; 12/7 giờ
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi thời gian mà vòi thứ nhất chảy riêng đầy bể là x (giờ), (x > 2)
Trong một giờ:
- Vòi thứ nhất chảy được 1/x (bể)
- Vòi thứ hai chảy được 1/(x-2) (bể)
- Vì vòi thứ ba chảy ra trong 7,5 giờ thì cạn bể nên trong 1 giờ vòi thứ ba chảy được 2/15 (bể)
Khi mở cả ba vòi thì vòi thứ nhất và vòi thứ hai chảy vào bể còn vòi thứ ba cho nước chảy ở bể ra nên ta có phương trình:
Vậy chỉ dùng vòi thứ nhất thì sau 10 giờ bể đầy nước
Đáp án: C
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử khi chảy một mình thì vòi thứ nhất chảy đầy bể trong x phút, vòi thứ hai trong y phút. Điều kiện x > 0, y > 0.
Ta có 1 giờ 20 phút = 80 phút.
Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\) bể, vòi thứ hai chảy được \(\frac{1}{y}\) bể, cả hai vòi cùng chảy được \(\frac{1}{80}\) bể nên ta được \(\frac{1}{x}+\frac{1}{y}=\frac{1}{80}\).
Trong 10 phút vòi thứ nhất chảy được \(\frac{10}{x}\) bể, trong 12 phút vòi thứ hai chảy được \(\frac{12}{x}\) bể. Vì cả hai vòi cùng chảy được \(\frac{2}{15}\) bể. Ta được:
\(\frac{10}{x}+\frac{12}{x}=\frac{2}{15}\)
Ta có hệ phương trình: \(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{80}\\\frac{10}{x}+\frac{12}{y}=\frac{2}{15}\end{cases}\)
Giải ra ta được x = 120, y = 240.
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (2 giờ), vòi thứ hai 240 phút (4 giờ).
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử khi chảy một mình thì vòi thứ nhất chảy đầy bể trong x phút, vòi thứ hai trong y phút. Điều kiện x > 0, y > 0.
Ta có 1 giờ 20 phút = 80 phút.
Trong 1 phút vòi thứ nhất chảy được bể, vòi thứ hai chảy được
bể, cả hai vòi cùng chảy được
bể nên ta được
+
=
.
Trong 10 phút vòi thứ nhất chảy được bể, trong 12 phút vòi thứ hai chảy được
bể. Vì cả hai vòi cùng chảy được
bể. Ta được:
+
=
Ta có hệ phương trình:
Giải ra ta được x = 120, y = 240.
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (2 giờ), vòi thứ hai 240 phút (4 giờ).
Xem thêm tại: http://loigiaihay.com/bai-38-trang-24-sgk-toan-9-tap-2-c44a5643.html#ixzz4diNZufQg
Bạn ơi bạn giảng lại cho mình chỗ 1/x,1/y đc ko ạ.mình chưa hiểu lắm
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi thời gian mà vòi thứ nhất chảy riêng đầy bể là x (giờ), (x > 0)
Trong một giờ:
- Vòi thứ nhất chảy được 1/x (bể)
- Vòi thứ hai chảy được 1/(x+4) (bể)
- Vòi thứ ba chảy được 1/6 (bể)
Khi mở cả ba vòi thì vòi thứ nhất và vòi thứ hai chảy vào bể còn vòi thứ ba cho nước ở bể chảy ra nên ta có phương trình:
Vậy chỉ dùng vòi thứ nhất thì sau 8 giờ bể đầy nước
Đáp án: D