Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là con của của B thì \(\left\{{}\begin{matrix}m-3>=-3\\m+4< =5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m< =1\end{matrix}\right.\)
=>0<=m<=1
Để B là tập con của A thì
\(\left\{{}\begin{matrix}m-1< 4\\-2< 2m+2\\m-1>=-2\\4< 2m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< 5\\-2m< 4\\m>=-1\\2m+2>4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 5\\m>-2\\m>=-1\\m>1\end{matrix}\right.\)
=>\(1< m< 5\)
a: \(A\cap B=\left(-3;1\right)\)
\(A\cup B\)=[-5;4]
A\B=[1;4]
\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)
b: C={1;-1;5;-5}
\(B\cap C=\left\{-5;-1\right\}\)
Các tập con là ∅; {-5}; {-1}; {-5;-1}
a: f(x) có ĐKXĐ là 6-x>=0
=>x<=6
=>\(A=(-\infty;6]\)
g(x) có ĐKXĐ: là 2x+1<>0
=>\(x< >-\dfrac{1}{2}\)
=>\(B=R\backslash\left\{-\dfrac{1}{2}\right\}\)
\(A\cap B=(-\infty;6]\cap\left(R\backslash\left\{-\dfrac{1}{2}\right\}\right)\)
\(=(-\infty;6]\backslash\left\{\dfrac{1}{2}\right\}\)
\(A\cup B=R\)
\(A\text{B}=(-\infty;6]\backslash\left(R\backslash\left\{-\dfrac{1}{2}\right\}\right)=\left\{-\dfrac{1}{2}\right\}\)
\(B\backslash A=\left(6;+\infty\right)\)
a) A ∪ B = (-∞; 15)
A ∩ B = [-2; 3)
b) Để A ⊂ B thì:
m - 1 > -2 và m + 4 ≤ 3
*) m - 1 > -2
m > -2 + 1
m > -1
*) m + 4 ≤ 3
m ≤ 3 - 4
m ≤ -1
Vậy không tìm được m thỏa mãn đề bài
Để A và B có nghĩa \(\Rightarrow\left\{{}\begin{matrix}m-1< 4\\2m+2>2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 5\\m>0\end{matrix}\right.\) (1)
Để A là tập con của B
\(\Rightarrow\left\{{}\begin{matrix}m-1\ge2\\2m+2\ge4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge3\\m\ge1\end{matrix}\right.\) \(\Rightarrow m\ge3\) (2)
Từ (1);(2) \(\Rightarrow5< m\le3\)
b)
=>\(\left\{{}\begin{matrix}m-1>2\\m+3\le5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>3\\m\le2\end{matrix}\right.\)(vô lý)
vậy ko tồn tại m
•○•