Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B\backslash A=\left\{1;3;4\right\}\)
Tập X được tạo ra bằng cách lấy hợp của tập \(B\backslash A\) với các tập con của A
Mà tập A có \(2^2=4\) tập con nên có 4 tập X thỏa mãn
\(C_BA=\left\{2;3;4\right\}\)
Tập \(C_BA\) có \(2^3=8\) tập con nên có 8 tập X thỏa mãn
\(E = \{ x \in \mathbb{N}|x < 8\} = \{ 0;1;2;3;4;5;6;7\} \)
a) Ta có: \(A\backslash B = \left\{ {0;1;2} \right\}\), \(B\backslash A = \left\{ 5 \right\},\)\((A\backslash B) \cap {\rm{(}}B\backslash A) = \emptyset \)
b) Ta có: \(A \cap B = \{ 3;4\} ,\;{C_E}(A \cap B) = \{ 0;1;2;5;6;7\} \)
\({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\} \Rightarrow ({C_E}A) \cap ({C_E}B) = \{ 6;7\} \)
c) Ta có: \(A \cup B = \{ 0;1;2;3;4;5\} ,\;{C_E}(A \cup B) = \{ 6;7\} \)
\({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\} \Rightarrow ({C_E}A) \cup ({C_E}B) = \{ 0;1;2;5;6;7\} \)
Do A⊂BA⊂B nên nếu X⊂A⇒X⊂BX⊂A⇒X⊂B
Do đó ta chỉ cần tìm tập còn của tập A
Tập con của A gồm: ∅;{1};{2};{1;2}∅;{1};{2};{1;2} có 4 tập thỏa mãn
A hợp X=B
=>X={1;3;4;0}; X={1;3;4;2}; A={1;3;4;0;2}
=>Có 3 tập hợp X thỏa mãn yêu cầu