\(3k+1\)l \(k\in Z\) }

B = {...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

Tập A là tập các số chia 3 dư 1

Tập B có dạng tổng quát 6m + 4 = 6m + 3 +1 => tập các số chia 3 dư 1

=> \(B\subset A\)

P/s

8 tháng 4 2017

Ta có: x = 3k+1 , k Є Z => x ∈ A

Gọi x' = 6m + 4 Є Z , ∀ x ∈ B
Ta có:
x' = 6m + 4 = 6m + 3 + 1 = 3(2m + 1) + 1
Do (2m + 1) ∈ Z nên đặt (2m + 1) = k' ∈ Z với k' là số lẻ
\(\Rightarrow\)x' = 3k' + 1 ∈ Z
\(\Rightarrow\)x' \(\in\) A
\(\Rightarrow\)B \(\in\) A

Vì B là tập các số nguyên có tận cùng là 0;2;4;6;8

nên B là tập các số chẵn

=>A=B

Vì 2k-2=2(k-1) chia hết cho 2

nên C là tập các số chẵn

=>A=C

1: A={-3;-2;-1;0;1;2;3}

B={2;-2;4;-4}

A giao B={2;-2}

A hợp B={-3;-2;-1;0;1;2;3;4;-4}

2: x thuộc A giao B

=>\(x=\left\{2;-2\right\}\)

5 tháng 4 2017

a) A={-16; -13; -10; -7; -4; -1; 2; 5; 8}

b) B={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}

c) C={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2}

NV
29 tháng 9 2020

\(3k-1=5m-2\)

\(\Leftrightarrow3k-9=5m-10\)

\(\Leftrightarrow3\left(k-3\right)=5\left(m-2\right)\)

Do 3 và 5 nguyên tố cùng nhau \(\Rightarrow k-3⋮5\Rightarrow k=5n+3\) với \(n\in Z\)

Vậy \(A\cap B=\left\{5n+3|n\in Z\right\}\)

NV
27 tháng 9 2020

\(11-3x>0\Leftrightarrow x< \frac{11}{3}\Rightarrow A=\left\{0;1;2;3\right\}\)

\(B=\left\{-3;-2;-1;0;1;2;3\right\}\)

\(A\cup B=B=...\)

\(A\cap B=A=...\)

\(C_BA=\left\{-3;-2;-1\right\}\)

\(A\backslash B=\varnothing\)

\(B\backslash A=\left\{-3;-2;-1\right\}\)

\(X=A;\left\{-3;0;1;2;3\right\};\left\{-2;0;1;2;3\right\};\left\{-1;0;1;2;3\right\}\) ; \(\left\{-3;-2;0;1;2;3\right\};\left\{-3;-1;0;1;2;3\right\};\left\{-2;-1;0;1;2;3\right\};B\)

NV
5 tháng 10 2020

\(B=\left\{-3;-2;-1;0;1;2;3;4\right\}\)

Để \(B\cap C=\varnothing\Leftrightarrow a\in D\)

Với \(D=\left\{x\in Z;x\le-4\right\}\)