Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :
\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
Lời giải:
Ta có:
\(x^2+2y^2+z^2-2xy-2y-4z+5=0\)
\(\Leftrightarrow (x^2+y^2-2xy)+(y^2-2y+1)+(z^2-4z+4)=0\)
\(\Leftrightarrow (x-y)^2+(y-1)^2+(z-2)^2=0\)
Ta thấy:
\(\left\{\begin{matrix} (x-y)^2\geq 0\\ (y-1)^2\geq 0\\ (z-2)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)
\(\Rightarrow (x-y)^2+(y-1)^2+(z-2)^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y=0\\ y-1=0\\ z-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=1\\ z=2\end{matrix}\right.\)
Do đó:
\(A=(x-1)^{2015}+(y-1)^{2015}+(z-1)^{2015}=1\)
Ta có:
\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)-15xy\left(x-y\right)+1\)
=\(0+0+0+1=1\)
\(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\dfrac{2015}{2016}\right)^0\)
\(=2\left(x-y\right)+13x^3y^2\left(x-y\right)-15xy\left(x-y\right)\)
\(=0+0+1=1\)
~^~
Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:
\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(VT=x^2+y^2+1+2xy+2x+2y+x^2=\left(x+y+1\right)^2+x^2\ge0\forall x;y\)
Đẳng thức xảy ra khi: \(\hept{\begin{cases}x=0\\x+y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)