\(\left(x+2019\right)^{2018}+\left|y-2020\right|=0\)0.Tính M=x+y
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

\(\text{Ta có:}\left(x+2019\right)^{2018}\ge0với\forall x\)

            \(|y-2020|\ge0với\forall y\)

\(\Rightarrow\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|\ge0với\forall x,y\)

\(\text{Mà }\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|=0\)\(\text{(Theo đề bài)}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2019\right)^{2018}=0\\|y-2020|=0\end{cases}\Rightarrow\hept{\begin{cases}x+2019=0\\y-2020=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=-2019\\y=2020\end{cases}}\)

\(\Rightarrow M=x+y=-2019+2020=1\)

15 tháng 10 2018

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)

+) \(\frac{y+z}{x}=2\)

=> y+z=2x

+) \(\frac{x+z}{y}=2\)

=>x+z=2y

+)\(\frac{x+y}{z}=2\)

=> x+y=2z 

Mà B= ( 1+x/y)(1+y/z) (1+z/x)

      B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

      B= \(\frac{2z.2x.2y}{xyz}\)

      B= 8

~ Chúc bạn học tốt ~

Tích và kết bạn với mình nha!

15 tháng 10 2018

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Lại có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

(+) Xét x + y + z \(\ne\) 0

Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)

30 tháng 11 2019

FFPUBGAOVCFLOL             

z đâu em ở \(\frac{z}{c}\)à 

30 tháng 11 2019

\(\frac{z}{c}\)chứ ko phải \(\frac{x}{c}\)

21 tháng 7 2019

\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)

Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)

nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)

thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)

\(\Rightarrow x-1=0\text{ và }y+3=0\)

\(\Rightarrow x=1\text{ và }y=-3\)

\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)

Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)

hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)

\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)

\(\Rightarrow x^2=9\text{ và }6y=2\)

\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)

Câu c) làm tương tự nha

8 tháng 3 2019

3. Tìm x biết: |15-|4.x||=2019

\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)

vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)

KL: x=508,5

16 tháng 12 2018

Cho x=2018\(\Rightarrow2f\left(2018\right)+f\left(\frac{1}{2018}\right)=2018\)                         (1)

Cho x=\(\frac{1}{2018}\)\(\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(\frac{1}{\frac{1}{2018}}\right)=\frac{1}{2018}\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(2018\right)=\frac{1}{2018}\)         (2)

Lấy (1) x 2 - (2)\(\Rightarrow4f\left(2018\right)+2f\left(\frac{1}{2018}\right)-2f\left(\frac{1}{2018}\right)-f\left(2018\right)=2018-\frac{1}{2018}\)

\(\Rightarrow3f\left(2018\right)=\frac{4072323}{2018}\Rightarrow f\left(2018\right)=\frac{4072323}{6054}\)

20 tháng 12 2018

Đù Nguyễn Hưng Phát giỏi hơn cả cô mình