K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Theo đề bài : 2x2 + 2y2 + 2xy - 2x + 2y + 2 = 0

\(\Rightarrow\) ( x2 + 2xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) = 0

( x + y )2 + ( x - 1 )2 + ( y + 1 )2 = 0

Ta thấy : \(\left(x+y\right)^2\ge0;\forall x,y\in R\)

\(\left(x-1\right)\ge0;\forall x\in R\)

\(\left(y+1\right)^2\ge0;\forall y\in R\)

\(\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0;\forall x,y\in R\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\left(\text{Thỏa mãn}\right)\)

Thay \(x=1\)\(y=-1\) vào \(A=\left(x-2\right)^{2017}+\left(y+1\right)^{2018}\) , ta được :

\(A=\left(x-2\right)^{2017}+\left(y+1\right)^{2018}\)

\(A=\left(1-2\right)^{2017}+\left(-1+1\right)^{2018}\)

\(A=-1+0\)

\(A=-1\)

Vậy \(A=-1\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2+2xy-2x+2y+2=0\\x=1\\y=-1\end{matrix}\right.\)