![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)
Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)
=> \(4\ge xy+2\)=> \(2\ge xy\)
=> \(A=2016+xy\le2016+2=2018\)
=> Amin=2018
\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x^2-2y=xy
=> x^2=(x+2)y
=> y=X^2/x+2 thay vao BT ta co tu lam nhe
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm min :
Ta có : \(x^2+y^2-xy=4\)
\(\Leftrightarrow x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\) ( vì \(\left(x-y\right)^2\ge0\) )
\(\Leftrightarrow\frac{A}{2}\le4\)
\(\Leftrightarrow A\le8\)
Tìm max
\(x^2+y^2-xy=4\)
\(\Leftrightarrow x^2+y^2=4+xy\)
\(\Leftrightarrow3\left(x^2+y^2\right)=8+\left(x+y\right)^2\ge8\)
\(\Leftrightarrow A\ge\frac{8}{3}\)
\(2x+y=6\Rightarrow y=6-2x\) Thay vào P ta được :
\(P=x\left(6-2x\right)=6x-2x^2=-2\left(x^2-3x\right)=-2\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right]\)
\(=-2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=-2\left(x-\frac{3}{2}\right)^2-2.\frac{-9}{4}=-2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\)
Vì \(-2\left(x-\frac{3}{2}\right)^2\le0\) \(\forall x\) nên \(-2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\le\frac{9}{2}\forall x\)
Dấu "=" xảy ra <=> \(-2\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\Rightarrow y=6-2.\frac{3}{2}=3\)
Vậy \(P_{max}=\frac{9}{2}\) tại \(x=\frac{3}{2};y=3\)