Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(8^y=2^{x+8}\) \(3^x=9^{y-1}\)
\(\left(2^3\right)^y=2^{x+8}\) \(3^x=\left(3^2\right)^{y-1}\)
\(2^{3y}=2^{x+8}\) \(3^x=3^{2y-2}\)
\(\Rightarrow3y=x+8\) \(\Rightarrow x=2y-2\) (2)
=> x = 3y - 8 (1)
Từ (1) và (2)
=> 3y - 8 = 2y - 2
=> 3y - 2y = -2 + 8
=> y = 6
Thay y vào phương trình (1)
=> x = 3y - 8 = 3.6 - 8 = 18 - 8 = 10
=> x + y = 10 + 6 = 16
Ta có : \(\left\{{}\begin{matrix}8^y=2^{x+8}\\3^x=9^{y-1}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(2^3\right)^y=2^{x+8}\\3^x=\left(3^2\right)^{y-1}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2^{3y}=2^{x+8}\\3^x=3^{2\left(y-1\right)}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3y=x+8\\x=2\left(y-1\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3y=x+8\\x=2y-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3y=2y-2+8\\x=2y-2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3y-2y=6\\x=2y-2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=6\\x=2y-2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=6\\x=10\end{matrix}\right.\)
\(\Rightarrow x+y=10+6=16\)
Vậy tổng của x và y là 16
a) Theo đề ta có :
\(2^{x-1}.3^{y-1}=12^{x+y}\)
\(\Rightarrow2^{x-1}.3^{y-1}=\left(2^2.3\right)^{x+y}\)
\(\Rightarrow2^{x-1}.3^{y-1}=2^{2.\left(x+y\right)}.3^{x+y}\)
\(\Rightarrow2^{x-1}=2^{2x+2y}\)và \(3^{y-1}=3^{x+y}\)
\(\Rightarrow x-1=2x+2y\) và \(y-1=x+y\)
\(\Rightarrow x-2x=2y+1\) và \(y-y=x+1\)
\(\Rightarrow-x=2y+1\) và \(x+1=0\)
\(\Rightarrow-\left(-1\right)=2y+1\) và \(x=-1\)
\(\Rightarrow y=\frac{1-1}{2}=0\) và x = -1
___________________________________________________________________________________________________________
b) \(3^x=9^{y-1}\) và \(8^y=2^{x+8}\)
\(\Rightarrow3^x=\left(3^2\right)^{y-1}\) và \(\left(2^3\right)^y=2^{x+8}\)
\(\Rightarrow3^x=3^{2y-2}\) và \(2^{3y}=2^{x+8}\)
\(\Rightarrow x=2y-2\) và \(3y=x+8\)
Thay x = 2y-2 vào 3y = x+8 , ta có :
\(3y=2y-2+8\)
\(\Rightarrow3y=2y+6\)
\(\Rightarrow3y-2y=6\)
\(\Rightarrow y=6\)
Thay y = 6 vào x = 2y-2 ta có :
\(x=2.6-2=10\)
Vậy x = 10 ; y = 6
2x = 8y+1
<=> 2x = 23.(y+1)
<=> x = 3.(y+1) <=> x = 3y + 3(1)
9y = 3x-9 <=> 2y = x - 9.(2)
(1)-(2) vtv => x - x + 9 = 3y + 3 - 2y
<=> 6 = y => x = 3.6 + 3 = 21
vậy x+y = 27
Ta có:
\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow x=3\left(y+1\right)\) (1)
\(9^y=3^{x-9}\Rightarrow3^{2y}=3^{x-9}\Rightarrow2y=x-9\) (2)
Thay (1) vào (2) ta có:
\(2y=3y+3-9\\ 2y=3y-6\\ 2y-3y=-6\\ -y=6\\ \Rightarrow y=6\)
Thay \(y=6\) vào \(2y=x-9\), ta có:
\(26=x-9\\ \Rightarrow x=26+9\\ \Rightarrow x=35\)
\(\Rightarrow x+y=6+35=41\)
Vậy: \(x+y=41\)
Mình nhầm, xin lỗi
Chỗ mà thay y=6 vào 2y = x-9 á, đổi 26 = x - 9 thành: 2.6 = x - 9 nha! Phần còn lại mình nghĩ bạn tự tính cũng được :)
Từ \(8^y=2^{x+8}\) suy ra \(\left(2^3\right)^y=2^{x+8}\Rightarrow2^{3y}=2^{x+8}\)
\(\Rightarrow3y=x+8\left(1\right)\)
Từ \(3^x=9^{y-1}\) suy ra \(3^x=\left(3^2\right)^{y-1}\Rightarrow3^x=3^{2\left(y-1\right)}\)
\(\Rightarrow x=2\left(y-1\right)\left(2\right)\). Thay (2) vào (1) ta có:
\(\left(1\right)\Rightarrow3y=2\left(y-1\right)+8\) \(\Rightarrow3y=2y-2+8\)
\(\Rightarrow3y=2y+6\Rightarrow y=6\) thay vào (2) ta có:
\(x=2\left(y-1\right)=2\left(6-1\right)=2\cdot5=10\)
Tổng 2 số x,y là \(x+y=10+6=16\)
sorry đề là \(8^y=2^{x+8}\)và \(3^x=9^{y-1}\)