\(x-2y=\sqrt{xy}\)

Tính giá trị của biểu thức  

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

mình làm ra rồi khỏi cần giúp nữa

31 tháng 5 2017

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla

16 tháng 8 2016

\(3x+3y-10\sqrt{xy}=0\Leftrightarrow\left(3\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-3\sqrt{y}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3\sqrt{x}=\sqrt{y}\\\sqrt{x}=3\sqrt{y}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=9x\\x=9y\end{cases}}\)

+TH1: \(y=9x\)

\(M=\frac{x-2.9x}{x+2.9x}=\frac{1-18}{1+18}\)

+TH2: \(x=9y\)

\(M=\frac{9y-2y}{9y+2y}=\frac{9-2}{9+2}\)

26 tháng 8 2018

Ta có: \(\frac{x}{1-x}+\frac{y}{1-y}=1\)

\(\Leftrightarrow\frac{x+y-2xy}{\left(x-1\right)\left(y-1\right)}=1\)

\(\Rightarrow x+y-2xy=xy-x-y+1\)

\(\Rightarrow2\left(x+y\right)-1=3xy\)

Lại có: \(P=x+y+\sqrt{x^2-xy+y^2}\)

\(=x+y+\sqrt{\left(x+y\right)^2-3xy}\)

\(=x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\)

\(=x+y+\sqrt{\left(x+y-1\right)^2}\)

Mặt khác: \(\frac{x}{1-x}+\frac{y}{1-y}=1\)\(0< x;y< 1\)

\(\Rightarrow\frac{x}{x-1}< 1\)

\(\Rightarrow x< \frac{1}{2}\)

Tương tự: \(y< \frac{1}{2}\)

=> x+y <1

Do đó P=1

13 tháng 3 2017

cac ban tra loi di

22 tháng 7 2016

1) \(x^2+y=y^2+x\Leftrightarrow x^2-y^2-\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=x\\y=1-x\end{cases}}\). Vì x,y là hai số khác nhau nên ta loại trường hợp x = y. Vậy ta có y = x-1.

\(P=\frac{x^2+\left(1-x\right)^2+x\left(1-x\right)}{x\left(1-x\right)-1}=\frac{x^2+x^2-2x+1-x^2+x}{-x^2+x-1}\)

\(=\frac{x^2-x+1}{-\left(x^2-x+1\right)}=-1\)