\(\left(2y-1\right)^2=\left(2y-x\right)\left(6y+x\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Ta đặt A =  \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left[\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)\right]+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+4y^2=t\Rightarrow A=t\left(t+2y^2\right)+y^4\)

\(=t^2+2ty^2+y^4=\left(t+y^2\right)^2\)

Do x, y nguyên nên t nguyên, vậy thì t + y2 cũng nguyên. Suy ra A là số chính phương.

6 tháng 11 2017

cô huyền giỏi quá. Nhờ có cô mà em đã biết làm bài này rồi ạ

8 tháng 12 2019

1/ b) Đặt \(\sqrt[3]{6x+4}=a\Rightarrow a^3=6x+4\)

Ta có hệ: \(\left\{{}\begin{matrix}x^3=6a+4\\a^3=6x+4\end{matrix}\right.\)

Lấy pt trên trừ pt dưới vế với vế, suy ra:

\(\left(x-a\right)\left(x^2+ax+a^2+6\right)=0\)

\(\Leftrightarrow x=a\Leftrightarrow x^3-6x-4=0\Leftrightarrow\left(x+2\right)\left(x^2-2x-2\right)=0\)