Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)
<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)
<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)
(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0
( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y
nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y
Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
<=> \(x=y=\frac{1}{3}\)
Làm tiếp:
Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P
ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)
phân tích gt sau đó suy ra x+y+x=0
từ đây tính đc x+y=? y+z=? x+z=?
ta được kết quả là'; -2006
Xét \(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\left(x+y+z\right)\left(x^2+2xy+y^2-xy-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
TH1:\(x+y+z=0\)
\(\Rightarrow x+y=-z;y+z=-x;z+x=-y\left(1\right)\)
Thay (1) vô pt cần tính:
\(\frac{2016xyz}{-z.-x.-y}=\frac{2016xyz}{-\left(xyz\right)}=-2016\)
TH2:\(x^2+y^2+z^2-xy-yz-xz=0\)
Nhân 2 vế với 2
\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
Do VT dương
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-z\right)^2=0\\\left(y-z\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x-y=0\\x-z=0\\y-z=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=z\\y=z\end{cases}}\Rightarrow x=y=z\)
Thay y,z ở pt cần tính là x
\(\Rightarrow\frac{2016x.x.x}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{2016x^3}{2x.2x.2x}=\frac{2016x^3}{8x^3}=\frac{2016}{8}=252\)
Vậy pt có thể = -2016 khi x + y + z = 0
pt có thể = 252 khi \(x^2+y^2+z^2-xy-xz-yz=0\)
Từ \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
Suy ra: x=y=z
\(\Rightarrow3x^{2018}=3y^{2018}=3z^{2018}=27^{673}=3^{2019}\)
\(\Leftrightarrow x^{2018}=y^{2018}=z^{2018}=3^{2018}\)
\(\Rightarrow x,y,z=3\)
Dễ tính A
thôi mk gợi ý nhé
biến đổi giả thiết như sau
(3xyz-3xy)-(3xz-3x)-(3yz-3y)+(3z-3)=x+y+z-3 =(x-1)+(y-1)+(z-1)
(=) 3(x-1)(y-1)(z-1) = (x-1)+(y-1)+(z-1)
=) 9[(x-1)(y-1)(z-1)]2=[(x-1)+(y-1)+(z-1)]2 >= 3[(x-1)(y-1)+(y-1)(z-1)+(z-1)(x-1)] (áp dụng BĐT a2+b2+c2>=ab+bc+ca)
phần còn lại bn triệt tiêu 3 mỗi vế là xong
năm mới chúc bn hc tốt, chăm chỉ và nghe lời cha mẹ
Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)
\(\Leftrightarrow x^{2018}=3^{2018}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)
Đến đây tự tính A nha!
Ta có:
M= \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
M = \(2\left(x+y\right)\left(x^2-xy+y^2\right)-3x^2-3y^2\)
M = \(2.\left(x^2-xy+y^2\right)-3x^2-3y^2\)
M = \(2x^2-2xy+2y^2-3x^2-3y^2\)
M = \(-x^2-2xy-y^2\)
M = \(-\left(x^2+2xy+y^2\right)\)
M = \(-\left(x+y\right)^2\)
M = \(-1^2\)
M = -1