\(x,y\) thỏa \(2y^3+7y+2x\sqrt{1-x}=3\sqrt{1-x}+3\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

\(\Leftrightarrow2y^3-6y^2+7y-3=-2x\sqrt{1-x}+2\sqrt{1-x}+\sqrt{1-x}\)

\(\Leftrightarrow2\left(y^3-3y^2+3y+1\right)+y-1=2\left(1-x\right)\sqrt{1-x}+\sqrt{1-x}\)

\(\Leftrightarrow2\left(y-1\right)^3+y-1=2\left(\sqrt{1-x}\right)^3+\sqrt{1-x}\) (1)

Xét hàm \(f\left(t\right)=2t^3+t\)

\(f'\left(t\right)=6t^2+1>0\Rightarrow f\left(t\right)\) đồng biến

Nên (1) tương đương: \(y-1=\sqrt{1-x}\Rightarrow y=1+\sqrt{1-x}\)

\(\Rightarrow P=x+2\sqrt{1-x}+2=-\left(1-x-2\sqrt{1-x}+1\right)+4=-\left(\sqrt{1-x}-1\right)^2+4\le4\)

9 tháng 8 2021

⇒ P = x + 2 √ 1 − x + 2

= − ( 1 − x − 2 √ 1 − x + 1 ) + 4

= − ( √ 1 − x − 1 ) 2 + 4 ≤ 4

Cho xin một like đi các dân chơi à.

undefined

1 tháng 4 2017

Từ định nghĩa bằng nhau của hai số phức, ta có:

a) ;

b) ;

c) .



31 tháng 8 2018

tag ko co thong bao de mai t nghien cuu

1 tháng 9 2018

Bài này cái khó là sử lý điều kiện thôi nên t làm phần đó thôi nhé.

Từ điều kiện suy ra được.

log\(\sqrt{3}\)(3x + 3y) + (3x + 3y) = log\(\sqrt{3}\)(x2 + y2 + xy + 2) + (x2 + y2 + xy + 2)

Dễ thấy hàm số f(t) = log\(\sqrt{3}\)(t) + t đồng biến trên (0; +\(\infty\)) nên

=> 3x + 3y = x2 + y2 + xy + 2

1 tháng 3 2020

T=\(a^3+b^3=98\)

chúc bạn hok tốt 

HAcker 2k6

1 tháng 3 2020

Bạn ơi có thể hướng dẫn chi tiết giúp mình không? cám ơn nhiều ạ

5 tháng 4 2016

Trong mặt phẳng với hệ tọa độ Oxy, với mỗi số thực x, xét các điểm A(c; x+1); \(B\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) và \(C\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)

Khi đó, ta có \(P=\frac{OA}{a}+\frac{OB}{b}+\frac{OC}{c}\) trong đó a=BC, b=CA, c=AB

Gọi G là trọng tâm của tam giác ABC, ta có :

\(P=\frac{OA.GA}{a.GA}+\frac{OB.GB}{b.GB}+\frac{OC.GC}{c.GC}=\frac{3}{2}\left(\frac{OA.GA}{a.m_a}+\frac{OB.GB}{b.m_b}+\frac{OC.GC}{c.m_c}\right)\)

Trong đó \(m_a;m_b;m_c\) tương ứng là độ dài đường trung tuyến xuất phát từ A,B, C của tam giác ABC

Theo bất đẳng thức Côsi cho 2 số thực không âm, ta có

\(a.m_a=\frac{1}{2\sqrt{3}}.\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}\)

         \(\le\frac{1}{2\sqrt{3}}.\frac{3a^2\left(2b^2+2c^2-a^2\right)}{2}=\frac{a^2+b^2+c^2}{2\sqrt{3}}\)

bằng cách tương tự, ta cũng có \(b.m_b\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\) và \(c.m_c\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\)

Suy ra \(P\ge\frac{3\sqrt{3}}{a^2+b^2+c^2}\left(OA.GA+OB.GB+OC.GC\right)\)  (1)

Ta có \(OA.GA+OB.GB+OC.GC\ge\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}.\)   (2)

         \(\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}\)

        \(=\left(\overrightarrow{OG}+\overrightarrow{GA}\right).\overrightarrow{GA}+\left(\overrightarrow{OG}+\overrightarrow{GB}\right).\overrightarrow{GB}+\left(\overrightarrow{OG}+\overrightarrow{GC}\right).\overrightarrow{GC}\)

        \(=\overrightarrow{OG}.\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+GA^2+GB^2+GC^2\)

        \(=\frac{4}{9}\left(m_a^2+m_b^2+m_c^2\right)\) \(=\frac{a^2+b^2+c^2}{3}\)        (3)

Từ (1), (2) và (3) suy ra \(P\ge\sqrt{3}\)

Hơn nữa, bằng kiểm tra trực tiếp ta thấy  \(P\ge\sqrt{3}\) khi x=0

Vậy min P=\(\sqrt{3}\)

 
16 tháng 8 2020

\(2018^{2\left(x^2-y+1\right)}=\frac{2x+y}{x^2+2x+1}\)

\(\Leftrightarrow2\left(x^2-y+1\right)=log_{2018}\left(\frac{2x+y}{x^2+2x+1}\right)\)

\(\Leftrightarrow2\left(x^2+2x+1-2x-y\right)=log_{2018}\left(2x+y\right)-log_{2018}\left(x^2+2x+1\right)\)

\(\Leftrightarrow2\left(x^2+2x+1\right)+log_{2018}\left(x^2+2x+1\right)=log_{2018}\left(2x+y\right)+2\left(2x+y\right)\)

Đặt \(f\left(u\right)=log_{2018}u+2u\)

\(\begin{matrix}x^2+2x+1>0\\2x+y>0\end{matrix}\Rightarrow u>0\)

\(f'\left(u\right)=\frac{1}{u.ln2018}+2>0\)

Suy ra hàm số đồng biến

\(\Leftrightarrow f\left(x^2+2x+1\right)=f\left(2x+y\right)\)\(\Leftrightarrow x^2+2x+1=2x+y\) (tính chất hàm đồng biến)

\(\Leftrightarrow y=x^2+1\)

\(P=2y-3x=2x^2-3x+2\)

\(P=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)

\(P_{min}=\frac{7}{8}\) khi \(x=\frac{3}{4}\)

1 tháng 4 2017

a)3x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=13x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=1

b)2x+y−1=(x+2y−5)i⇔{2x+y−1=0x+2y−5=0⇔{x=−1y=3