\(x\ge0,y\ge\frac{1}{4}\) thỏa mãn \(x^3+y^3=x^2-2y^2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2020

Theo AM - GM và Bunhiacopski ta có được 

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)

Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)

\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)

Đặt \(t=\frac{z}{x+y}\ge1\)

Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)

\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)

Vậy ta có đpcm

23 tháng 6 2020

Ta có:

\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)

Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\) 

9 tháng 2 2017

\(\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3zy+5xy}+\frac{z^4}{2z^2+3xz+5yz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2x^2+2y^2+2z^2+8xy+8yz+8xz}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Xét \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\x^2+z^2\ge2\sqrt{x^2z^2}=2xz\end{matrix}\right.\)

Cộng từng vế:

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Rightarrow8\left(xy+yz+xz\right)\le8\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{10}\)

Ta có: \(x^2+y^2+z^2\ge\frac{1}{3}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{10}\ge\frac{1}{30}\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{1}{30}\)

\(\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{1}{30}\)

\(\Leftrightarrow\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\ge\frac{1}{30}\) ( đpcm )

11 tháng 2 2017

bucminh chịu chết

3 + (x²/y² + y²/x²) + (x²/z² + y²/z²) + (z²/x² + z²/y²) 
x²/y² + y²/x² ≥ 2 (Theo AM - GM) 
Nên A ≥ 5 + (x²/z² + y²/z²) + (z²/x² + z²/y²) 
Sử dụng 2 BĐT quen thuộc sau: 
a² + b² ≥ (1/2)*(a + b)² 
1/a + 1/b ≥ 4/(a + b) 

Đề thi vào lớp 10 môn Toán tỉnh Nghệ An năm 2014

https://thi.tuyensinh247.com/de-thi-vao-lop-10-mon-toan-tinh-nghe-an-nam-2014-c29a17566.html

Vào đó xem cho nó full :)))

4 tháng 10 2017

\(\hept{\begin{cases}x^3y^3+1=2y^3\\\frac{x^2}{y}+\frac{x}{y^2}=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^3+\frac{1}{y^3}=2\\\frac{x}{y}\left(x+\frac{1}{y}\right)=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{y}\right)\left(x^2+\frac{x}{y}+\frac{1}{y^2}\right)=2\\\frac{x}{y}\left(x+\frac{1}{y}\right)=2\end{cases}}\)
Suy ra:
 \(\left(x+\frac{1}{y}\right)\left(x^2+\frac{x}{y}+\frac{1}{y^2}\right)=\frac{x}{y}\left(x+\frac{1}{y}\right)\)
\(\Leftrightarrow\left(x+\frac{1}{y}\right)\left(x^2+\frac{x}{y}+\frac{1}{y^2}-\frac{x}{y}\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{y}\right)\left(x^2+\frac{1}{y^2}\right)=0\)
Nhận thấy \(x^2+\frac{1}{y^2}\ne0\) vì nếu \(x^2+\frac{1}{y^2}=0\) thì \(\hept{\begin{cases}x=0\\y=0\end{cases}}\) (vô lý).
Suy ra: \(x+\frac{1}{y}=0\).
vậy đề bài sai.

21 tháng 10 2017

\(\frac{x}{3-yz}+\frac{y}{3-zx}+\frac{z}{3-xy}\le\frac{x}{3-\frac{y^2+z^2}{2}}+\frac{y}{3-\frac{z^2+x^2}{2}}+\frac{z}{3-\frac{x^2+y^2}{2}}\)

\(=\frac{2x}{3+x^2}+\frac{2y}{3+y^2}+\frac{2z}{3+z^2}\le\frac{2x}{4\sqrt[4]{x^2}}+\frac{2y}{4\sqrt[4]{y^2}}+\frac{2z}{4\sqrt[4]{z^2}}\)

\(=\frac{\sqrt{x}}{2}+\frac{\sqrt{y}}{2}+\frac{\sqrt{z}}{2}\le\frac{x^2+3}{8}+\frac{y^2+3}{8}+\frac{z^2+3}{8}\)

\(=\frac{3}{8}+\frac{9}{8}=\frac{3}{2}\)

21 tháng 10 2017

cách khác: cũng đến chỗ <= sigma 2x/3+x^2 

<= 2x/2(x+1) (do x^2+3=x^2+1+2>=2x+2) <= sigma x/x+1 = 3- sigma (1/x+1) 

sigma 1/x+1 >= 9/x+y+z+3 dễ rồi

30 tháng 5 2017

đặt x2 + y2 = a; xy = b. khi đó a - b = 1 hay a = b + 1.

ta phải chứng minh x4 + y4 - x2y2 \(\ge\)\(\frac{1}{9}\)hay a2 - 3b2 \(\ge\)\(\frac{1}{9}\)  (1)

thế a = b + 1 vào (1) ta được 9b2 - 9b - 4 \(\le\)0 hay (3b + 1)(3b - 4) \(\le\)0 hay \(\frac{-1}{3}\le b\le\frac{4}{3}\)

ta sẽ chứng minh \(\frac{-1}{3}\le b\le\frac{4}{3}\).

thật vậy

ta có x2 + y2\(\ge\)2xy nên từ giả thiết suy ra xy \(\le\) 1 hay b \(\le\)1 nên b \(\le\)\(\frac{4}{3}\)

mặt khác từ giả thiết ta có (x + y)2 - 3xy = 1 nên 3xy + 1  = (x + y)2\(\ge\)0 hay xy \(\ge\)\(\frac{-1}{3}\)hay b  \(\ge\)\(\frac{-1}{3}\)

từ đó suy ra đpcm.

1 tháng 2 2018

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}=\frac{16}{a+b+c+d}\)ta có :

\(\frac{16}{3x+3y+2z}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)

\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\)

Cộng theo vế 3 đẳng thức trên ta được :

\(16.\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\le4.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=4.6=24\)

\(\Rightarrow\)\(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)

1 tháng 2 2018

Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath

7 tháng 6 2020

Áp dụng bất đẳng thức AM - GM cho các bộ bốn số không âm, ta được: \(LHS=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-zx}+\frac{2z^2+x^2+y^2}{4-xy}\)\(=\frac{x^2+x^2+y^2+z^2}{4-yz}+\frac{y^2+y^2+z^2+x^2}{4-zx}+\frac{z^2+z^2+x^2+y^2}{4-xy}\)\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\)

Như vậy, ta cần chứng minh: \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{zx}}{zx\left(4-zx\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)

Theo bất đẳng thức Cauchy-Schwarz, ta có: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)

Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{zx}\right)\rightarrow\left(a;b;c\right)\). Khi đó \(\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)

và ta cần chứng minh \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge1\)

Xét BĐT phụ:  \(\frac{x}{x^2\left(4-x^2\right)}\ge-\frac{1}{9}x+\frac{4}{9}\left(0< x\le1\right)\)(*)

Ta có: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(x^2-2x-9\right)}{9x\left(x-2\right)\left(x+2\right)}\ge0\)(Đúng với mọi \(x\in(0;1]\))

Áp dụng, ta được: \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge-\frac{1}{9}\left(a+b+c\right)+\frac{4}{9}.3\)

\(\ge-\frac{1}{9}.3+\frac{4}{3}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

1. Chứng minh với mọi số thực a, b, c ta có 2a2+b2+c2\(\ge\)2a(b+c)

Chứng minh:

Ta có 2a2+b2+c2=(a2+b2)+(a2+c2)

Áp dụng bđt cauchy ta có

(a2+b2)+(a2+c2)\(\ge\)2ab+2ac=2a(b+c)