Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy xem phương pháp chọn điểm rơi của BĐT AM-GM( BĐT Cô-si)
Giải
\(P=\frac{3x}{10}+\frac{30}{x}+\frac{y}{20}+\frac{5}{y}+\frac{17x}{10}+\frac{19y}{20}\)
Áp dụng BĐT AM-GM, ta có:
\(\frac{3x}{10}+\frac{30}{x}\ge2\sqrt{\frac{3x}{10}\cdot\frac{30}{x}}=6\)
\(\frac{y}{20}+\frac{5}{y}\ge2\sqrt{\frac{y}{20}\cdot\frac{5}{y}}=1\)
Do đó
\(P\ge6+1+17+\frac{19}{2}=\frac{67}{2}\)(Vì \(x,y\ge10\))
Vậy \(P_{min}=\frac{67}{2}\Leftrightarrow x=y=10\)
Ta có: \(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{4}{5}x+\frac{6}{5}+\frac{4}{5}y+\frac{y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{4}{5}\left(x+y\right)+\left(\frac{6}{5}x+\frac{30}{x}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)
\(Vì:x,y>0\) nên ta áp dụng BĐT Cauchy cho hai số dương \(\frac{6}{5}x\) và \(\frac{30}{x};\frac{y}{5}\) và \(\frac{5}{y}\) ta được:
\(\frac{6}{5}x+\frac{30}{x}\ge2\sqrt{\frac{6}{5}x.\frac{30}{x}}=12\left(1\right)\)
\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) và giả thiết \(x+y\ge10\)
\(\Rightarrow P\ge8+12+2=22\)
\(\Rightarrow Min_P=22\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=5\)
\(Q=2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\)
Ta có :
\(2x^2+\frac{2}{x^2}\ge2\sqrt{2x^2.\frac{2}{x^2}}=2\sqrt{2.2}=4\) (BĐT AM - GM)
Dấu "=" xảy ra <=> \(2x^2=\frac{2}{x^2}\Rightarrow x=1\)
\(3y^2+\frac{3}{y^2}\ge2\sqrt{3y^2.\frac{3}{y^2}}=2\sqrt{3.3}=6\) (BĐT AM - GM)
Dấu "=" xảy ra <=> \(3y^2=\frac{3}{y^2}\Rightarrow y=1\)
\(\Rightarrow Q=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge4+6+9=19\)
Dấu "=" xảy ra <=> x = y = 1
Vậỵ GTNN của Q là 19 tại x = y = 1
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2+2001\)
\(P=4x^2+\frac{1}{x^2}+4+4y^2+\frac{1}{y^2}+4+2001\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{2^2}{2}=2\)
Dấu " = " xảy ra <=> x=y=1
Áp dụng BĐT AM-GM ta có:
\(P\ge3\left(x^2+y^2\right)+2.\sqrt{x^2.\frac{1}{x^2}}+2.\sqrt{y^2.\frac{1}{y^2}}+2009\ge3.2+2+2+2009=2019\)
Dấu " = " xảy ra <=> x=y=1
KL:......................................