K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)

     \(=\frac{10x}{5}+\frac{5y}{5}+\frac{30}{x}+\frac{5}{y}\)

     \(=\frac{6x}{5}+\frac{4x}{5}+\frac{y}{5}+\frac{4y}{5}+\frac{30}{x}+\frac{5}{y}\)

      \(=\left(\frac{6x}{5}+\frac{30}{x}\right)+\left(\frac{4x}{5}+\frac{4y}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)

Áp dụng bất đẳng thức cô-si cho hai số không âm

\(\frac{6x}{5}+\frac{30}{x}\ge2\sqrt{\frac{6x}{5}.\frac{30}{x}}=2\sqrt{36}=2.6=12\) (1)

\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\) (2)

Theo đề \(x+y\ge10\) suy ra

\(\frac{4x}{5}+\frac{4y}{5}=\frac{4\left(x+y\right)}{5}\ge\frac{4.10}{5}=8\) (2)

Cộng (1); (2) ; (3) vế theo vế ta được:

\(\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4x}{5}+\frac{4y}{5}\ge12+2+8=22\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{6x}{5}=\frac{30}{x}\\\frac{y}{5}=\frac{5}{y}\end{cases}\Rightarrow\hept{\begin{cases}x^2=25\\y^2=25\end{cases}}}\)

Vì x;y dương nên (x;y) = (5;5)

18 tháng 4 2019

\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)

\(\Leftrightarrow P=0,8\left(x+y\right)+\left(1,2x+\frac{30}{x}\right)+\left(0,2y+\frac{5}{y}\right)\)

Áp dụng BĐT AM-GM ta có:

\(P\ge0,8\left(x+y\right)+2.\sqrt{1,2x.\frac{30}{x}}+2.\sqrt{0,2y.\frac{5}{y}}=8+12+2=22\)

Dấu " = " xảy ra <=> x=y=5

Vậy \(P_{min}=22\Leftrightarrow x=y=5\)

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

25 tháng 3 2020

\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy  ra tại x=y=1/2

25 tháng 3 2020

Có vẻ kết quả  bị sai Huy ơi.

Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

NM
2 tháng 9 2021

ta có 

\(A^2=\left(x+2y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)=25\left(\text{ BĐT Bunhia}\right)\)

vậy ta có \(A\le5\)hay GTLN của A là 5