Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x+y+\frac{1}{2x}+\frac{2}{y}=\left(\frac{x}{2}+\frac{1}{2x}\right)+\left(\frac{y}{2}+\frac{2}{y}\right)+\left(\frac{x}{2}+\frac{y}{2}\right)\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+2\sqrt{\frac{y}{2}.\frac{2}{y}}+\frac{3}{2}=1+2+\frac{3}{2}=\frac{9}{2}\)Đẳng thức xảy ra khi và chỉ khi :
\(\frac{x}{2}=\frac{1}{2x}\Leftrightarrow2x^2=2\Rightarrow x=1\)(vì x>0)
\(\frac{y}{2}=\frac{2}{y}\Leftrightarrow y^2=4\Rightarrow y=2\)(vì y>0)
\(x+y=3\)
\(\Rightarrow x=1;y=2\)

Áp dụng BĐT Cô-si dạng Engel,ta có :
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)
Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)
\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)

Ta có : \(S=x+y+\frac{1}{2x}+\frac{2}{y}\)
\(=\left(\frac{1}{2}x+\frac{1}{2x}\right)+\left(\frac{1}{2}y+\frac{2}{y}\right)+\left(\frac{1}{2}x+\frac{1}{2}y\right)\)
\(=\left(\frac{1}{2}x+\frac{1}{2x}\right)+\left(\frac{1}{2}y+\frac{2}{y}\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{1}{2}x\cdot\frac{1}{2x}}+2\sqrt{\frac{1}{2}y\cdot\frac{2}{y}}+\frac{1}{2}\cdot3\)( áp dụng bđt AM-GM và giả thiết x + y ≥ 3 )
\(=1+2+\frac{3}{2}=\frac{9}{2}\)
Đẳng thức xảy ra khi x = 1 , y = 2
Vậy MinS = 9/2, đạt được khi x = 1 , y = 2

đây là đề Prance Pre - Mo 2005
mình dùng pp đổi biến nhé bạn @@
Đặt \(a=\frac{xy}{z};b=\frac{yz}{x};c=\frac{xz}{y}\) (a,b,c >0)
Nên bài toán trở thành : \(ab+bc+ca=3\),CMR : \(a+b+c\ge3\)
Ta có bất đẳng thức sau :
\(a^2+b^2+c^2\ge ab+bc+ca< =>a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)
Vậy bất đẳng thức được chứng minh hoàn tất
Dấu = xảy ra khi và chỉ khi \(x=y=z=1\)

B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.

Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)
Xét \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\\\sqrt{xy}\le\frac{x+y}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{y+z}{2}+\frac{x+z}{2}+\frac{x+y}{2}\)
\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{2\left(x+y+z\right)}{2}\)
\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)
\(\Rightarrow x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le2\left(x+y+z\right)\)
\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
Ta có: \(x+y+z\ge3\)
\(\Rightarrow\frac{x+y+z}{2}\ge\frac{3}{2}\)
\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{3}{2}\)
Vì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)
\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\) ( đpcm )

Áp dụng Cosi Rồi áp dụng tiếp AM-GM là ra nhé :) Ko bt có đúng ko nx
Mình làm 1 phần nhé ko phải dùng Cosi
Phân tích: \(x+y+\frac{1}{2x}+\frac{2}{y}\)\(=\left(\frac{y}{2}+\frac{2}{y}\right)+\left(\frac{x}{2}+\frac{y}{2}\right)+\left(\frac{x}{2}+\frac{1}{2x}\right)\)\(\ge2\sqrt{\left(\frac{x}{2}.\frac{1}{2}\right)}+2\sqrt{\left(\frac{y}{2}.\frac{2}{y}\right)}+\frac{3}{2}=\frac{9}{2}\)
\(\Rightarrow x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)
Đẳng thức xảy ra khi:
Ta có: \(\frac{x}{2}=\frac{1}{2x}\Rightarrow\left(2x.x\right)=\left(2.1\right)\Rightarrow2x^2.2\Rightarrow x=1\)( Thỏa mãn ) ( vì x là một số thực dương )
Ta có: \(\frac{y}{2}=\frac{2}{y}\Rightarrow\left(y.y\right)=\left(2.2\right)\Rightarrow y^2=4\Rightarrow y=2\)( thỏa mãn ) ( vì y là một số thực dương )
Mà: \(x+y=1+2=3\)( thỏa mãn đề bài \(x+y\ge3\))
Vậy đẳng thức \(x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)khi x = 1 và y = 2

Bổ đề: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)
\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left[\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)\right]^2}{2}=\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
(Cứ thấy sao sao?x + y = 1 = > x = y = 1/2)
Với ĐK : x + y = 1 ... , chỉ có x = y = 1/2 (cái nài là STP mà có phải SD đâu??)
Chia làm 2TH
\(N>\frac{25}{2}\); TH2 : \(N=\frac{25}{2}\)
\(N=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{25}{2}\)
\(N=\left(\frac{1}{2}+\frac{1}{\frac{1}{2}}\right)^2+\left(\frac{1}{2}+\frac{1}{\frac{1}{2}}\right)^2\ge\frac{25}{2}\)
\(N=\left(\frac{1}{2}+1\div1\div2\right)^2+\left(\frac{1}{2}+1\div1\div2\right)^2\ge\frac{25}{2}\)
\(N=\left(\frac{1}{2}+1\div2\right)^2+\left(\frac{1}{2}+1\div2\right)^2\ge\frac{25}{2}\)
\(N=\left(\frac{1}{2}+\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{1}{2}\right)^2\ge\frac{25}{2}\)
\(N=\left(1\right)^2+\left(1\right)^2\ge\frac{25}{2}\)
\(N=2\ge\frac{25}{2}\)
----------------------------
\(N=\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2\ge\frac{25}{2}\)
Tương tự như trên :\(N=\left(\frac{1}{2}+\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{1}{2}\right)^2\)
\(N=\left(\frac{1}{2}+\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)\ge\frac{25}{2}\)
Chẳng khác gì phía trên,mà 25 / 2 = 25 : 2 = 12 , 5 . Lại còn x , y là số dương .
[Trình mình thì chẳng CM được cái này(vì không CM được)]