Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)
\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)
Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)
\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)
\(x+y+\frac{1}{2x}+\frac{2}{y}=\left(\frac{x}{2}+\frac{1}{2x}\right)+\left(\frac{y}{2}+\frac{2}{y}\right)+\left(\frac{x}{2}+\frac{y}{2}\right)\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+2\sqrt{\frac{y}{2}.\frac{2}{y}}+\frac{3}{2}=1+2+\frac{3}{2}=\frac{9}{2}\)Đẳng thức xảy ra khi và chỉ khi :
\(\frac{x}{2}=\frac{1}{2x}\Leftrightarrow2x^2=2\Rightarrow x=1\)(vì x>0)
\(\frac{y}{2}=\frac{2}{y}\Leftrightarrow y^2=4\Rightarrow y=2\)(vì y>0)
\(x+y=3\)
\(\Rightarrow x=1;y=2\)
Áp dụng bđt AM - GM ta có :
\(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\)
\(\frac{2}{y}+2y=2\left(\frac{1}{y}+y\right)\ge2.2\sqrt{\frac{1}{y}.y}=4\)
Cộng vế với vế ta được : \(\frac{1}{x}+\frac{2}{y}+x+2y\ge6\)
\(\Leftrightarrow\frac{1}{x}+\frac{2}{y}+3\ge6\Rightarrow\frac{1}{x}+\frac{2}{y}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Ta có:\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\ge\frac{9}{x+2y}=\frac{9}{3}=3\left(đpcm\right)\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow x=y=1}\)
:))
Ta có : \(S=x+y+\frac{1}{2x}+\frac{2}{y}\)
\(=\left(\frac{1}{2}x+\frac{1}{2x}\right)+\left(\frac{1}{2}y+\frac{2}{y}\right)+\left(\frac{1}{2}x+\frac{1}{2}y\right)\)
\(=\left(\frac{1}{2}x+\frac{1}{2x}\right)+\left(\frac{1}{2}y+\frac{2}{y}\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{1}{2}x\cdot\frac{1}{2x}}+2\sqrt{\frac{1}{2}y\cdot\frac{2}{y}}+\frac{1}{2}\cdot3\)( áp dụng bđt AM-GM và giả thiết x + y ≥ 3 )
\(=1+2+\frac{3}{2}=\frac{9}{2}\)
Đẳng thức xảy ra khi x = 1 , y = 2
Vậy MinS = 9/2, đạt được khi x = 1 , y = 2
Áp dụng BĐT Bunhiacopxki :
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2y}\right)^2\right]\left[\left(\sqrt{\frac{1}{x}}\right)^2+\left(\sqrt{\frac{2}{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\sqrt{\frac{1}{x}}+\sqrt{2y}\cdot\sqrt{\frac{2}{y}}\right)^2\)
\(\Leftrightarrow\left(x+2y\right)\left(\frac{1}{x}+\frac{2}{y}\right)\ge\left(\frac{\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{y}}{\sqrt{y}}\right)^2\)
\(\Leftrightarrow3\cdot\left(\frac{1}{x}+\frac{2}{y}\right)\ge\left(1+2\right)^2\)
\(\Leftrightarrow3\cdot\left(\frac{1}{x}+\frac{2}{y}\right)\ge9\)
\(\Leftrightarrow\frac{1}{x}+\frac{2}{y}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Cách khác:
Với x,y >0.Áp dụng bđt svac -xơ có:
\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{4}{2y}\ge\frac{\left(1+2\right)^2}{x+2y}=\frac{9}{3}=3\)
=> \(\frac{1}{x}+\frac{2}{y}\ge3\)
Dấu "=" xảy ra <=> x=y=1