Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3xy=x+y+1\ge3\sqrt[3]{xy}\Rightarrow xy\ge1\)
\(4xy=xy+x+y+1=x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{2xy+x+y}{4\left(xy\right)^2}=\frac{5xy-1}{4\left(xy\right)^2}\)
Xét hiệu: \(P-1=\frac{5xy-1}{4x^2y^2}-1=\frac{\left(4xy-1\right)\left(1-xy\right)}{4x^2y^2}\le0\) với mọi \(xy\ge1\)
Vậy \(P\le1\)hay max P = 1.
Dẫu "=" xảy ra <=> x = y = 1.
Áp dụng BĐT Cauchy ta có: \(3xy\ge2\sqrt{xy}+1\Leftrightarrow xy\ge1\)
Áp dụng BĐT Cauchy ta có:
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{5xy-1}{xy\left(x+1\right)\left(y+1\right)}=\frac{5xy-1}{4\left(xy\right)^2}\), đặt t=\(\frac{1}{xy}\)
\(f\left(t\right)=\frac{5}{4}t-\frac{1}{4}t^2\)đồng biến trên (0;1] nên f(t) đạt GTLN tại t=1
Vậy GTKN của P=1 đạt được khi x=y=1
\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)
Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)
và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)
\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)
Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)
\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)
\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)
\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\), \(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)
Xét hàm số :
\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) , (0<\(t\le\frac{1}{9}\)
Ta có: \(x+y\ge2\sqrt{xy}\Rightarrow3xy\ge2\sqrt{xy}+1\Rightarrow3xy-2\sqrt{xy}-1\ge0\)
\(\Rightarrow\left(3\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)\ge0\Rightarrow\sqrt{xy}-1\ge0\) (do \(3\sqrt{xy}+1>0\) )
\(\Rightarrow\sqrt{xy}\ge1\Rightarrow xy\ge1\Rightarrow1-xy\le0\)
\(P=\dfrac{y\left(x+1\right)+x\left(y+1\right)}{xy\left(x+1\right)\left(y+1\right)}=\dfrac{2xy+x+y}{xy\left(xy+x+y+1\right)}\)
\(\Rightarrow P=\dfrac{2xy+3xy-1}{xy\left(xy+3xy\right)}=\dfrac{5xy-1}{4\left(xy\right)^2}=\dfrac{-4\left(xy\right)^2+5xy-1}{4\left(xy\right)^2}+1\)
\(\Rightarrow P=\dfrac{\left(1-xy\right)\left(4xy+1\right)}{4\left(xy\right)^2}+1\)
Do \(\left\{{}\begin{matrix}1-xy\le0\\4xy+1>0\\4\left(xy\right)^2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(1-xy\right)\left(4xy+1\right)}{4\left(xy\right)^2}\le0\)
\(\Rightarrow P\le0+1=1\Rightarrow P_{max}=1\) khi \(x=y=1\)
Bài 1:
Ta có: \(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\dfrac{b}{\sqrt{1+b^2}}=\dfrac{b}{\sqrt{ab+bc+ca+b^2}}=\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)
\(\dfrac{c}{\sqrt{1+c^2}}=\dfrac{c}{\sqrt{ab+bc+ca+c^2}}=\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Vậy \(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng BĐT AM-GM ta có:
\(P\le a\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+b\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)+c\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)=\dfrac{9}{4}\)
Bài 2:
Ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}=\dfrac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\dfrac{2+\dfrac{4+\left(1+x^2\right)}{2}}{2x}=\dfrac{9+x^2}{4x}\)
Tương tự ta cũng có:
\(\dfrac{1+\sqrt{1+y^2}}{y}\le\dfrac{9+y^2}{4y};\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+z^2}{4z}\)
Cộng theo vế 3 BĐT trên ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+x^2}{4x}+\dfrac{9+y^2}{4y}+\dfrac{9+z^2}{4z}\)
\(=\dfrac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\dfrac{9\cdot\dfrac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=xyz\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)
Bài 1:
\(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Sau đó côsi
Tự làm nốt nhé, ra 3/2 đấy. Em học lớp 8 nên cách giải chỉ thế thôi. Câu 2 em chưa làm được
Áp dụng bất đẳng thức Minkowski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức Minkowski ta có:
√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2
≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2
=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2
≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82
Dấu "=" xảy ra khi: x=y=z=13
Bạn tham khảo:
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge... - Hoc24
Từ giả thiết ta có:
\(x+y=3\left(\sqrt{x+1}+\sqrt{y+2}\right)\le3\sqrt{2\left(x+y+3\right)}\)
\(\Leftrightarrow P\le3\sqrt{2\left(P+3\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\18P+54\ge P^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\P^2-18P-54\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le P\le9+3\sqrt{15}\)
\(\Rightarrow maxP=9+3\sqrt{15}\Leftrightarrow\left(x;y\right)=\left(\dfrac{10+3\sqrt{15}}{2};\dfrac{8+3\sqrt{15}}{2}\right)\)
\(\sqrt{x+2017}-y^3=\sqrt{y+2017}-x^3\)
\(\Leftrightarrow\left(\sqrt{x+2017}-\sqrt{y+2017}\right)+\left(x^3-y^3\right)=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x+2017}+\sqrt{y+2017}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+2017}+\sqrt{y+2017}}+\left(x^2+xy+y^2\right)\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow P=x^2-3x^2+12x-x^2+2018\)
\(=-3x^2+12x+2018=2030-3\left(x-2\right)^2\le2030\)
Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)
\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)
Tương tự ta được
\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)
\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :
\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)
\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)
\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)
\(1=x+y+3xy\le x+y+\dfrac{3}{4}\left(x+y\right)^2\)
\(\Rightarrow3\left(x+y\right)^2+4\left(x+y\right)-4\ge0\)
\(\Rightarrow3\left(x+y+2\right)\left(x+y-\dfrac{2}{3}\right)\ge0\)
\(\Rightarrow x+y\ge\dfrac{2}{3}\) \(\Rightarrow\dfrac{1}{x+y}\le\dfrac{3}{2}\)
Đồng thời: \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{1}{2}.\left(\dfrac{2}{3}\right)^2=\dfrac{2}{9}\)
\(\Rightarrow-\left(x^2+y^2\right)\le-\dfrac{2}{9}\)
Từ đó ta có:
\(A=\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{1-\left(x+y\right)}{x+y}=\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{1}{x+y}-1\)
\(A\le\sqrt{2\left[2-\left(x^2+y^2\right)\right]}+\dfrac{1}{x+y}-1\le\sqrt{2\left(2-\dfrac{2}{9}\right)}+\dfrac{3}{2}-1=\dfrac{3+8\sqrt{2}}{6}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)