Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ từ hồi trả lời cho câu này củng hơi khó cần thời gian suy nghĩ
\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)
\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)
\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)
Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1
\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)
Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)
Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3
Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)
\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)
\(=\sqrt{3}\text{}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)
\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
\(P=\frac{bc}{2ab+ac}+\frac{ca}{2ab+bc}+\frac{4ab}{bc+ca}\)
Xét \(Q=P+3=\frac{bc}{2ab+ac}+1+\frac{ca}{2ab+bc}+1+\frac{4ab}{bc+ca}+1\)
\(Q=\frac{2ab+ac+bc}{2ab+ac}+\frac{2ab+ac+bc}{2ab+bc}+\frac{4ab+bc+ca}{bc+ca}\)
\(=\left(2ab+ac+bc\right)\left(\frac{1}{2ab+ac}+\frac{1}{2ab+bc}\right)+\frac{4ab+bc+ca}{bc+ca}\)
\(\ge\left(2ab+ac+bc\right)\frac{4}{4ab+ac+bc}+\frac{4ab+bc+ca}{bc+ca}=K\)(Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a, b không âm)
\(K=\frac{2\left(4ab+ac+bc\right)+2\left(ac+bc\right)}{4ab+ac+bc}+\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\)\(+\frac{7\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\)
\(=2+\left[\frac{2\left(ac+bc\right)}{4ab+ac+bc}+\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\right]+\frac{7}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)
\(\ge2+2\sqrt{\frac{2\left(ac+bc\right)}{4ab+ac+bc}.\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}}+\frac{7}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)(Áp dụng BĐT Cô - si cho 2 số không âm)
\(=\frac{37}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)
Mặt khác: \(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=\frac{2\left(a^2+b^2\right)}{ab}+\frac{c\left(a^3+b^3\right)}{a^2b^2}\)
\(=\frac{2\left(a^2+b^2\right)}{ab}+\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}\)\(\ge\frac{2.2ab}{ab}+\frac{c\left(a+b\right)\left(2ab-ab\right)}{a^2b^2}=4+\frac{ac+bc}{ab}\)(theo BĐT \(a^2+b^2\ge2ab\))
\(\Rightarrow\frac{ac+bc}{ab}\le2\Leftrightarrow\frac{ab}{ac+bc}\ge\frac{1}{2}\)
\(\Rightarrow K\ge\frac{37}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\ge\frac{37}{9}+\frac{7}{9}.\frac{4}{2}=\frac{17}{3}\)
Ta có \(Q=P+3\ge K\ge\frac{17}{3}\Rightarrow P\ge\frac{17}{3}-3=\frac{8}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}2ab+ac=2ab+bc\\\frac{2\left(ac+bc\right)}{4ab+ac+bc}=\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\\a=b\end{cases}}\)\(\Leftrightarrow a=b=c\)
Từ \(2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=6\Rightarrow6=\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}+\frac{2\left(a^2+b^2\right)}{ab}\)
ta có \(a^2+b^2\ge2ab\Rightarrow6=\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}+\frac{2\left(a^2+b^2\right)}{ab}\ge\frac{c\left(a+b\right)}{ab}+4\)
\(\Rightarrow0< \frac{c\left(a+b\right)}{ab}\le2\)
Lại có
\(\frac{bc}{a\left(2b+c\right)}+\frac{ac}{b\left(2a+c\right)}=\frac{\left(bc\right)^2}{abc\left(2b+c\right)}+\frac{\left(ac\right)^2}{abc\left(2a+c\right)}\ge\frac{\left(bc+ac\right)^2}{2abc\left(a+b+c\right)}\)\(=\frac{\left[c\left(a+b\right)\right]^2}{2abc\left(a+b+c\right)}\)
và \(abc\left(a+b+c\right)=ab\cdot bc+bc\cdot ba+ab\cdot ca\le\frac{\left(ab+bc+ca\right)^2}{3}\)
\(\Rightarrow\frac{bc}{a\left(2b+c\right)}+\frac{ac}{b\left(2a+c\right)}\ge\frac{3}{2}\left(\frac{c\left(a+b\right)}{ab+bc+ca}\right)^2=\frac{3}{2}\left(\frac{\frac{c\left(a+b\right)}{ab}}{1+\frac{c\left(a+b\right)}{ab}}\right)^2\)
Đặt \(t=\frac{c\left(a+b\right)}{ab}\Rightarrow P\ge\frac{3t^2}{2\left(1+t\right)^2}+\frac{4}{t}\left(0< t\le2\right)\)
Có \(\frac{3t^2}{2\left(1+t\right)^2}+\frac{4}{t}=\left(\frac{3t^2}{\left(1+t\right)^2}+\frac{4}{t}-\frac{8}{3}\right)+\frac{8}{3}=\frac{-7t^2-8t^2+32t+24}{6t\left(1+t\right)^2}+\frac{8}{3}\)
\(=\frac{\left(t-2\right)\left(-7t^2-22t-12\right)}{6t\left(1+t\right)^2}\ge0\forall t\in(0;2]\)
=> \(\frac{\left(t-2\right)\left(-7t^2-22t-12\right)}{6t\left(1+t\right)^2}+\frac{8}{3}\ge\frac{8}{3}\forall t\in(0;2]\frac{1}{2}\)
Dấu "=" xảy ra <=> t=2 hay a=b=c
P=a2b+ab2-\(\frac{\left(a+b\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{\left(4ab\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{16a^2b^2}{6a^2b^2}\)+\(\frac{2ab}{6a^2b^2}\)
=a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)
Áp dụng Bất đẳng thức Cauchy cho 3 số dương, ta được:
P==a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)\(\ge\)3.\(\sqrt[3]{a^3b^3\frac{8}{3}}\)+\(\frac{1}{3ab}\)=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)
Áp dụng Bất đẳng thức Cauchy cho 2 số dương, ta được:
P=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)\(\ge\)2.\(\sqrt{\frac{6}{\sqrt[3]{3}}.ab.\frac{1}{3ab}}\)=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)
Vậy MinP=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)
\(-\frac{8}{3}\)có phải là số không âm đâu mà áp dụng BĐT Cosi