Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A\ge\left(a+b+1\right)\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}\)
Đặt \(t=a+b\)thì \(t\ge2\) theo AM-GM
Ta có:\(A\ge\frac{t^3}{2}+\frac{t^2}{2}+\frac{4}{t}=\frac{t^3}{2}+\frac{t^2}{4}+\frac{t^2}{4}+\frac{2}{t}+\frac{2}{t}\ge4+1+3=8\)
Đẳng thức xảy ra khi \(a=b=1\)
mình quỳ bạn luôn Nhân Thiên Hoàng ạ kiệt lên mạng hỏi mà mày lại bảo vậy thì thua luôn
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
\(a^2+b^2\geq 2ab\)
\(\Rightarrow \left\{\begin{matrix} 2(a^2+b^2)\geq a^2+b^2+2ab\\ a^2+b^2+2ab\geq 4ab\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 2(a^2+b^2)\geq (a+b)^2\\ (a+b)^2\geq 4ab\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 2(a^2+b^2)\geq 4\\ 4\geq 4ab\end{matrix}\right.\Rightarrow a^2+b^2\geq 2; ab\leq 1\)
\(\Rightarrow a^2+b^2\geq 2; \frac{1}{ab}\geq 1\)
\(\Rightarrow P\geq 2+1=3\)
Vậy $P_{\min}=3$ khi $a=b=1$