Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(2b\right)^2-18a\left(671-9a\right)=162a^2-12078a+4b^2\)
\(=\left(81a^2-12078a+450241\right)+\left(81a^2+4b^2\right)-450241\)
\(\ge\left(9a-671\right)^2+\frac{\left(9a+2b\right)^2}{2}-450241\ge\frac{\left(\frac{2013}{2}\right)^2}{2}-450241>0\)
\(\Delta'=4b^2-18a\left(671-9a\right)\ge4b^2-18a\left(\frac{18a+4b}{3}-9a\right)\)
\(\Delta'\ge4b^2-a\left(24b-54a\right)=4b^2-24ab+54a^2=\left(2b-6a\right)^2+18a^2\ge0\)
Phương trình luôn có nghiệm
1.
\(DK:x\ge2\)
\(\Leftrightarrow\left(3\sqrt{x-2}-3\right)+\left(3-\sqrt{x+6}\right)-\left(2x-6\right)=0\)
\(\Leftrightarrow\frac{3\left(x-3\right)}{\sqrt{x-2}+3}-\frac{x-3}{3+\sqrt{x+6}}-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(1\right)\\\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2=0\left(2\right)\end{cases}}\)
PT(2) khac khong voi moi \(x\ge2\)
Vay nghiem cua PT la \(x=3\)
\(x^3+2x=y^2-2009\)
\(\Leftrightarrow x^3-x=y^2-3x-2009\)
\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)=y^2-3x-2009\)
Dễ thấy VT chia hết cho 3 nên VP chia hết cho 3
Suy ra \(y^2\) chia 3 dư 2 vì 2009 chia 3 dư 2 và 3x chia hết cho 3 ( vô lý vì số chính phương ko chia 3 dư 2 )
Vậy pt vô nghiệm
Xét phương trình \(\left(x^2+ax+b\right)=0\left(1\right)\) có \(\Delta_1=a^2-4b\)
Xét phương trình \(\left(x^2+bx+a\right)=0\left(2\right)\) có \(\Delta_2=b^2-4a\)
\(\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)\)
mà \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\Leftrightarrow2\left(a+b\right)=ab\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)=a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> Có ít nhất 1 trong 2 pt có nghiệm
=> đpcm