\(\left(x^2-y^2\right)^{1995}=\left(x+y\right)^{1995}\times\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Ta có tính chất : a^n . b^n = (a.b)^n

=> (x+y)^1995 . (x-y)^1995 = [(x+y).(x-y)] ^1995 = (x^2-y^2)^1995

=> ĐPCM

k mk nha

15 tháng 7 2017

a) \(VT=\left(x^2-y^2\right)^{1995}=\left[\left(x-y\right)\left(x+y\right)\right]^{1995}\)

\(=\left(x+y\right)^{1995}.\left(x-y\right)^{1995}=VP\)

\(\Rightarrow\)đpcm

24 tháng 7 2017

\(\left(x-3\right)^2+\left(y+2\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)

đề sai câu b các câu sau áp dụng tương tự

24 tháng 7 2017

c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)

\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)

22 tháng 9 2023

a, |- \(x\) + 2|  - |\(x\) + 7| = 0

           |- \(x\) + 2| = | \(x\) + 7|

           \(\left[{}\begin{matrix}-x+2=x+7\\-x+2=-x-7\end{matrix}\right.\)         

            \(\left[{}\begin{matrix}x=-\dfrac{5}{2}\\2=-7\left(loại\right)\end{matrix}\right.\)

              vậy \(x\) = -\(\dfrac{5}{2}\)

22 tháng 9 2023

b, |2\(x\) - 1| + |2 + y| ≥ 0

     |2\(x\) - 1| ≥ 0 ∀ \(x\)

     |2 + y| ≥ 0 ∀ y 

  ⇒ |2\(x\) - 1| +|2 + y| ≥ 0 ∀\(x\) ; y

21 tháng 6 2017

a) Vì 2 vế ko âm nên bình phương cả 2 vế ta dc :

\(\left|x+y\right|^2\le\left|x\right|^2+\left|y\right|^2\)

\(\Rightarrow\left(x+y\right).\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)

\(\Rightarrow x^2+2xy+y^2\le x^2+2\left|x\right|\left|y\right|+y^2\)

\(\Rightarrow xy\le\left|xy\right|\) (Luôn đúng với mọi \(x,y\))

Vậy bất đẳng thức trên đúng. Dấu "=" xảy ra khi \(\left|xy\right|=xy\) \(\Leftrightarrow x,y\) cùng dấu

Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\rightarrowđpcm\)

b) Áp dụng câu a ta có :

\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\Rightarrow\left|x-y\right|\ge\left|x\right|-\left|y\right|\)

Vậy \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\rightarrowđpcm\)

21 tháng 6 2017

Câu hỏi của Nguyệt Nga Hồ - Toán lớp 7 | Học trực tuyến

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)=\frac{15}{2}\)

\(y\left(x+y+z\right)=\frac{-5}{2}\)

\(z\left(x+y+z\right)=20\)

=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)

                                               \(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=\frac{10}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=5+20\)

                                                                     \(\left(x+y+z\right)^2=25\)

=>x+y+z=5 hoặc x+y+x=-5

Với x+y+z=5

=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)

   \(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)

   \(z.5=20\)=>\(z=\frac{20}{5}=4\)

Với x+y+z=-5

=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)

   \(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)

   \(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)

Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\)\(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)

\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)

\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)

Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).

3 tháng 10 2017

1. Tìm x:

a) \(\left(x+36\right)^2=1936\Leftrightarrow x+36=\pm44.\) Vậy x = 8 hoặc x = -80

b) \(\left(\dfrac{3}{5}\right)^{x+2}=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}\right)^{x+2}=\left(\dfrac{3}{5}\right)^4\Leftrightarrow x+2=4\Leftrightarrow x=2\)

c) Xem lại đề

d) \(\left(\dfrac{9}{16}\right)^{x-5}=\left(\dfrac{4}{3}\right)^4\Leftrightarrow\left(\dfrac{3}{4}\right)^{2\left(x-5\right)}=\left(\dfrac{3}{4}\right)^{-4}\Leftrightarrow2\left(x-5\right)=-4\Leftrightarrow x=3\)

e) \(\left(\dfrac{3}{5}\right)^x.\left(\dfrac{125}{27}\right)^x=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}.\dfrac{125}{27}\right)^x=\left(\dfrac{3}{5}\right)^4\Leftrightarrow\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^{-4}\Leftrightarrow2x=-4\) Vậy x = -2

3 tháng 10 2017

3. Tính giá trị của biểu thức:

\(A=\left\{-\left[\left(\dfrac{1}{x}\right)^2\right]^3\right\}^5.\left\{-\left[\left(-x\right)^5\right]^2\right\}^3\) \(\left(x\notin0\right)\)

\(=\left\{-\left[-\dfrac{1}{x^2}\right]^3\right\}^5.\left\{-\left[-\left(-x\right)^5\right]^2\right\}^3=\left\{-\left[-\dfrac{1}{x^6}\right]\right\}^5.\left\{-\left[x^5\right]^2\right\}^3\)

\(=\left\{\dfrac{1}{x^6}\right\}^5.\left\{-x^{10}\right\}^3=\dfrac{1}{x^{30}}.\left(-x^{30}\right)=-1\)

x-2y= 2(x+y)

=> x-2y = 2x+2y

=> -2y-2y= 2x-x

=> x= -4y

Thay x= -4y vào x-y= x/y

=> -4y-y = -4y/ y

=.> -5y= -4

=> y =4/5

=> x= -16/5

bạn ơi mk làm nhanh chỗ tìm x nha

chỗ tìm x bạn làm vậy nè: x =-4y hay x= -4 . 4/5 = -16/5