Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(0< \frac{a}{b}< 1\) nên ta có thể giả sử a và b là 2 số nguyên dương
Do đó ta có :
\(0< a< b\Rightarrow b-a>0\)
Ta có :
\(y-x=\frac{\left(b-a\right)c}{\left(b+c\right)b}>0\)
=> y > x ( đpcm)
Các bạn xem bài làm của mình , còn thiếu sót gì mong các bạn bỏ qua.
Sgk
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
b1 thì dễ rùi, mik ko làm nha.b2:
Ta có x = \(\frac{a}{m}\) = \(\frac{a+a}{2m}\); y = \(\frac{b}{m}\) = \(\frac{b+b}{2m}\)
Vì x<y => a<b => a+a<a+b => \(\frac{a+a}{2m}<\frac{a+b}{2m}\)=> x<z (1)
Vì a<b => a+b<b+b => \(\frac{a+b}{2m}<\frac{b+b}{2m}\) => z<y (2)
Từ (1) và (2) => x<z<y
a, b cùng dấu thì a/b > 0 ..dễ hiểu thôi nếu cả a, b đều dương thì a/d dĩ nhiên dương, nếu cả a,b đều âm thì a/b cũng dương vì -a/-b = a/b (nhân hai vế với trừ 1)
a, b khác dấu thì a/b luôn âm nên a/b < 0
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
Đúng 8
thien ty tfboys 08/06/2015 lúc 14:52
Ta có :x<y hay a/m <b/m=>a<b
So sánh x,y,z ta chuyển chúng cùng mau :2m
x=a/m =2a/2m va y=b/m =2b/2m va z=a+b/2m
Ma a<b
Suy ra :a+a<b +a
Hay 2a <a+b
Suy ra x<z (1)
Ma :a<b
Suy ra :a+b<b+b
Hay a+b ,2b
suy ra z < y (2)
Từ (1) và (2) ,kết luận :x < z < y
a.
Ta có:\(\frac{-45}{47}>-1\) và \(\frac{51}{-50}< -1\)\(\Rightarrow\)\(\frac{-45}{47}>\frac{51}{-50}\Rightarrow x>y\)
b.
x>y mà
Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì x<y⇒ab <cd ⇒ad<bc (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> ab <a+cb+d
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> a+cb+d <cd
=> z < y (2)
Từ (1) và (2) => x < z < y