Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}\)<\(\frac{c}{d}\)
=> \(\frac{ad}{bd}\)<\(\frac{bc}{bd}\)(tích chéo)
=> ad<bc(điều phải chứng minh)
t.i.c.k cho a nha
a) ta có \(\frac{a}{b}=\frac{ad}{bd}\)cả tử và mẫu với d >0
\(\frac{c}{d}=\frac{cb}{bd}\)cả tử và mẫu với b >0
vì \(\frac{a}{b}< \frac{c}{d}\)nên \(\frac{ab}{bd}< bc,db\Rightarrow ad< bc\)vì tích bd >0
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
Cho hai số hữu tỉ a/b và c/d ( b > 0, d > 0)
a) Nếu a/b < c/d thì ad < bc
b) Nếu ad < bc thì a/b < c/d
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{cb}{db}\)mà b,d > 0 nên bd > 0 => ad < cb
Ta có :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}< 0\Leftrightarrow\frac{ad-bc}{bd}< 0\)
Mà \(b>0;d>0\Rightarrow bd>0\)
Vậy \(\frac{ad-bc}{bd}< 0\Leftrightarrow ad-bc< 0\)
\(\Rightarrow ad< bc\left(đpcm\right)\)
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y
Bài làm:
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow\frac{ad}{ac}< \frac{bc}{ac}\Leftrightarrow\frac{d}{c}< \frac{b}{a}\)
Học tốt!!!!