K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2015

 

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

17 tháng 1 2018

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

1 tháng 3 2019

Câu 1 dễ, bn tự lm nhé

Câu 2:Lấy a/b=c/d=k(k thuộc N*) 
=>a=bk 
c=dk 
Xét : 2a-3c/2b-3d=2bk-3dk/2b-3d= 
k^2.(2b-3d)/2b-3d=k^2 (1) 
2a+3c/2b+3d=2bk+3dk/2b+3d= 
k^2.(2b+3d)/2b+3d=k^2 (2) 
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Áp dụng BĐT AM-GM:

\((2a+b+c)^2=\frac{8}{9}(a+b+c)^2+\frac{(a+b+c)^2}{9}+a^2+2a(a+b+c)\)

\(\geq \frac{8}{9}(a+b+c)^2+\frac{2}{3}a(a+b+c)+2a(a+b+c)=\frac{8(a+b+c)^2}{9}+\frac{8a(a+b+c)}{3}\)

Do đó \(\frac{1}{(2a+b+c)^2}\leq \frac{9}{8(a+b+c)(4a+b+c)}\). Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow P\leq \frac{9}{8}.\frac{1}{a+b+c} \left(\frac{1}{4a+b+c}+\frac{1}{4b+a+c}+\frac{1}{4c+a+b} \right)\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{4a+b+c}\leq \frac{1}{36}\left (\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{36}\left(\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)\) cùng với những phân thức tương tự

\(\frac{1}{a+b+c}\leq \frac{1}{9}\left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Suy ra \(P\leq \frac{1}{8}\left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\frac{1}{36}\left (\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\)

Mặt khác theo hệ quả của BĐT AM-GM:

\(3=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{1}{3}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq 3\)

Suy ra \(P\leq \frac{3}{16}\). Dấu bằng xảy ra khi \(a=b=c=1\)

10 tháng 7 2017

Cho vô box Toán 7