K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

Min của A là 99 khi (x;y)=(2;3).

Chúc abh học tốt.

NV
19 tháng 5 2021

\(A=\left(x+\dfrac{4}{x}\right)+5\left(\dfrac{y}{3}+\dfrac{3}{y}\right)+17\left(x+y\right)\)

\(A\ge2\sqrt{\dfrac{4x}{x}}+5.2\sqrt{\dfrac{3y}{3y}}+17.5=99\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)

29 tháng 8 2021

Giá trị lớn nhất là 3

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

NV
12 tháng 1 2021

\(A\ge\dfrac{\left(1+2\right)^2}{x+y}=9\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{3};\dfrac{2}{3}\right)\)

12 tháng 1 2021

Tại sao  \(A\ge\dfrac{\left(1+2\right)^2}{x+y}=9\) vậy bạn?

NV
1 tháng 3 2023

Ta có: \(2x^3+2y^3-\left(x+y\right)\left(x^2+y^2\right)=\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow\dfrac{x^3+y^3}{x^2+y^2}\ge\dfrac{x+y}{2}\)

Tương tự: \(\dfrac{y^3+z^3}{y^2+z^2}\ge\dfrac{y+z}{2}\) ; \(\dfrac{z^3+x^3}{z^2+x^2}\ge\dfrac{z+x}{2}\)

Cộng vế: \(P\ge x+y+z\ge6\)

\(P_{min}=6\) khi \(x=y=z=2\)

11 tháng 5 2023

Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có 

\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)

\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)

    \(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)

 

11 tháng 5 2023

Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)

29 tháng 8 2021

Giá trị nhỏ nhất là 2