Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)
<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)
<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)
(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0
( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y
nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y
Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
<=> \(x=y=\frac{1}{3}\)
Làm tiếp:
Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P
ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
Nhận xét :
x2 lớn hơn 0 ( với mọi x dương )
y2 lớn hơn 0 ( với mọi y dương )
Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2 và y2 max
Nhưng x + y = 2
=> x = y = 1
A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\)
Vậy A min = 5 <=> x = y = 1
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2
AM-GM => x + y >= \(2\sqrt{xy}\)
=> \(2\sqrt{xy}\)<= 2
=> xy <= 1
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)
=> A >= 1/xy + 3/xy
=> A >= 4/xy
mà xy <= 1
=> A >= 4/1
=> A>= 4
dấu bằng sảy ra khi x = y = 2/2 = 1
Vậy GTNN của A là 4 khi x = y = 1
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0
Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)
Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)
\(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)
\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)
\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)
Dấu "=" xảy ra khi: x=y=z>0
Bài 2:
+) Với y=0 <=> x=0
Ta có: 1-xy= 12 (đúng)
+) Với \(y\ne0\)
Ta có: \(x^6+xy^5=2x^3y^2\)
\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)
\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)
\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)
Độ dài cạnh của tam giác bằng 7 cm và 13 cm
Mà tam giác này cân
=> Cạnh còn lại của tam giác là 7 cm ( Dựa vào bất đẳng thức tam giác 0
Chu ci tam giác là :
7 + 13 + 7 = 27 ( cm )
Vậy chu vi tam giác đó là ; 27 cm
TH1:Cạnh đáy bằng 7 cm
Chu vi của hình tam cân đó là :
13x2+7=33(cm)
TH2:Cạnh đáy bằng 13 cm
Chu vi của hình tam giác cân đó là :
7x2+13=27(cm)
Cho hai số dương x,y thỏa mãn: 2x2+xy-y2=0. Tính giá trị biểu thức:
A = \(\frac{x^2y+xy^2}{x^3+y^3}\)
đưa nó vế dạng a^3 + b^3 + c^3 = 3abc
Ta có :
\(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)
⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0
⇔ \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0
⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0
TH1 :
x + y + \(\dfrac{1}{3}\) = 0
⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)
TH2 :
\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)
⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0
⇒ \(x-\dfrac{1}{3}\) = 0
\(y-\dfrac{1}{3}\) = 0
\(x-y\) = 0
⇔ x = y = \(\dfrac{1}{3}\)
Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :
\(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)
= \(\dfrac{1}{3}\) . 9
= 3
\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)