Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2\sqrt{a}+b^2\sqrt{b}+c^2\sqrt{c}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(=\left(a^2\sqrt{a}+\frac{1}{\sqrt{a}}\right)+\left(b^2\sqrt{b}+\frac{1}{\sqrt{b}}\right)+\left(c^2\sqrt{c}+\frac{1}{\sqrt{c}}\right)\)
\(\ge2a+2b+2c\ge6\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=6\)
câu a)
đặt A= vế trái
=>A=1/2ab+1/2ab+1/(a2+b2) (3)
(a+b)2>=4ab (tự cm)
=>1>=4ab
hay 4ab <=1
=>2ab<=1/2
=>1/2ab>=2 (1)
sau đó áp dụng BĐT:1/x+1/y >= 4/(x+y) ta đc :
1/2ab+1/(a2+b2) >= 4/(a+b)2=4/1=4 (2)
từ (1),(2),(3)=>dpcm
Áp dụng bđt AM-GM:
\(a^2\sqrt{a}+\frac{1}{\sqrt{a}}\ge2a\)
\(b^2\sqrt{b}+\frac{1}{\sqrt{b}}\ge2b\)
\(c^2\sqrt{c}+\frac{1}{\sqrt{c}}\ge2c\)
Cộng theo vế: \(VT\ge2\left(a+b+c\right)\ge\frac{2}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=6\) (Cauchy-Schwarz)
\("="\Leftrightarrow a=b=c=1\)
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Em mới vừa nghĩ ra cách khác )):
\(VT=\frac{a^2+b^2}{a^2b^2}+\frac{4}{a^2-2ab+b^2}=a^2+b^2+\frac{4}{a^2+b^2-2}\)
\(=a^2+b^2-2+\frac{4}{a^2+b^2-2}+2\)
\(\ge2\sqrt{\left(a^2+b^2-2\right).\frac{4}{a^2+b^2-2}}+2=6\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
Đơn giản xúc tích ngắn gọn dễ hiểu :)) Cauchy-Schwarz dạng Engel + Cosi nhé
\(\frac{a^3}{1+b^2}+\frac{b^3}{1+a^2}=\frac{a^2}{b^3+b}+\frac{b^2}{a^3+a}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a^2-ab+b^2+1\right)}=\frac{a+b}{a^2+b^2}\ge\frac{2\sqrt{ab}}{2\sqrt{\left(ab\right)^2}}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)
Chúc bạn học tốt ~
ấy khúc cuối ngu was -,-
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\) ( vì a, b dương )
Chúc bạn học tốt ~
Ta có : \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}=\frac{3}{b+c}+\frac{3}{c+a}+\frac{3}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Ta cầm chứng minh : \(\hept{\begin{cases}\frac{3}{a+b}+\frac{3}{a+c}+\frac{3}{b+c}\ge\frac{9}{2}\left(1\right)\\\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\left(2\right)\end{cases}}\)
Ta có bđt (1) \(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge9\)
\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(a+c\right)\right]\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge9\)
Áp dụng bđt AM GM ta có :
\(\hept{\begin{cases}\left(a+b\right)+\left(b+c\right)+\left(a+c\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{3}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\end{cases}}\)
Nhân vế với vế ta được đpcm ; Vậy bđt (1) đc chứng minh
Ta có \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\)
Vậy bđt (2) đc chứng minh
Do 2 bất đẳng thức dước chứng minh
\(\Rightarrow\frac{3+a^2}{b+c}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\ge\frac{3}{2}+\frac{9}{2}=6\) (ĐPCM)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)