\(\le2\sqrt{2}\)

tìm GTNN của \...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Min P = \(\sqrt{2}\Leftrightarrow a=y=\sqrt{2}\)

31 tháng 12 2015

câu hỏi tương tự nha tuấn anh

21 tháng 4 2017

số 9 nha chúc bạn học giỏi nhớ k cho mình nhé

27 tháng 4 2017

Ta có \(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(a+b\le2\sqrt{2}\) \(\Rightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Hay \(P=\frac{1}{a}+\frac{1}{b}\ge\sqrt{2}\)

Dấu "=" xảy ra <=> \(a=b=\sqrt{2}\)

Vậy \(P_{min}=\sqrt{2}\) tại \(a=b=\sqrt{2}\)

3 tháng 4 2015

theo bất đẳng thức : AM-GM. ta có: a+b>= 2căn(ab)​.suy ra.(ab)<=(a+b)2/4.( lưu ý(a+b)bình phương chia 4 nha em.).vây ab=2. theo biểu thức.P=1/a+1/b theo BĐT:AM-GM thì:P>=(1/căn(ab)):dấ = xảy ra thì P đạt GTNN:  P=1/căn2. em nhớ diển đạt = bằng biểu thức toan học nha.

5 tháng 1 2016

Áp dụng BĐT sau:1/a+1/b>=4/(a+b)   =>   P>=4/(a+b)

Mà a+b<=2V2 => 4/(a+b)>=4/2V2=V2

Vậy P >=V2.Dấu = khi va chi khi a=b=V2

4 tháng 2 2022

Từ bất đẳng thức luôn đúng \(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\)\(\Leftrightarrow a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)(*)

Vì a, b là các số thực dương nên nhân cả 2 vế của (*) cho \(\frac{1}{ab\left(a+b\right)}\), ta có:

\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4}{ab\left(a+b\right)}\)\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\Leftrightarrow P\ge\frac{4}{a+b}\)
Lại có \(a+b\le2\sqrt{2}\)\(\Leftrightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Từ đó ta có \(P\ge\sqrt{2}\)

Dấu "=" xảy ra khi \(a=b=\sqrt{2}\)

NV
31 tháng 3 2019

\(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow P_{min}=\sqrt{2}\) khi \(a=b=\sqrt{2}\)

22 tháng 5 2019

(a+b) 2-4ab= (a-b) 2 ≥ 0

DD
7 tháng 2 2021

\(P=\frac{1}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\ge\frac{\left(1+1\right)^2}{\sqrt{a+3}+\sqrt{b+3}}=\frac{4}{\sqrt{a+3}+\sqrt{b+3}}\)

Ta có: 

\(\left(\sqrt{a+3}.1+\sqrt{b+3}.1\right)^2\le\left(1^2+1^2\right)\left(a+3+b+3\right)\le16\)

\(\Rightarrow\sqrt{a+3}+\sqrt{b+3}\le\sqrt{16}=4\)

\(\Rightarrow P\ge\frac{4}{\sqrt{a+3}+\sqrt{b+3}}\ge\frac{4}{4}=1\).

Dấu \(=\)xảy ra khi \(a=b=1\).

7 tháng 2 2021

\(P=\frac{1}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\Rightarrow P^2=\left(\frac{1}{a+3}+\frac{1}{b+3}\right)+\frac{2}{\sqrt{\left(a+3\right)\left(b+3\right)}}\)\(\ge\frac{4}{\left(a+b\right)+6}+\frac{2}{\frac{\left(a+3\right)+\left(b+3\right)}{2}}=\frac{8}{a+b+6}\ge\frac{8}{2+6}=1\)

\(\Rightarrow P\ge1\)

Đẳng thức xảy ra khi a = b = 1

NV
1 tháng 3 2022

\(\sqrt{a^2+\dfrac{1}{b+c}}=\dfrac{2}{\sqrt{17}}\sqrt{\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)

Mặt khác:

\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6.\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

18 tháng 9 2019

Ta co:

\(P\ge21\left(a^2+b^2+c^2\right)+12\left(a+b+c\right)^2+\frac{2017.9}{2}\)

\(=21\left(a^2+b^2+c^2\right)+12\left(a+b+c\right)^2+\frac{18153}{2}\)

\(\Leftrightarrow\frac{P}{\left(a+b+c\right)^2}\ge21\left[\left(\frac{a}{a+b+c}\right)^2+\left(\frac{b}{a+b+c}\right)^2+\left(\frac{c}{a+b+c}\right)^2\right]+12+\frac{\frac{18153}{2}}{\left(a+b+c\right)^2}\)

Dat \(\left(\frac{a}{a+b+c};\frac{b}{a+b+c};\frac{c}{a+b+c}\right)\rightarrow\left(x;y;z\right)\)

\(\Rightarrow x+y+z=1\)

\(\Rightarrow\left(a+b+c\right)^2=\frac{a^2}{x^2}\)

BDT tro thanh:

\(\frac{P}{\left(a+b+c\right)^2}\ge21\left(x^2+y^2+z^2\right)+12+\frac{18153}{2\left(a+b+c\right)^2}\)

\(\Leftrightarrow\frac{P}{\frac{a^2}{x^2}}\ge21\left(x^2+y^2+z^2\right)+12+\frac{18153}{2\left(a+b+c\right)^2}\ge21.\frac{\left(x+y+z\right)^2}{3}+12+\frac{18153}{8}\)

\(\Leftrightarrow\frac{x^2P}{a^2}\ge7+12+\frac{18153}{8}\)

Ta lai co:\(x=\frac{a}{a+b+c}\ge\frac{a}{2}\Rightarrow a^2\le4x^2\)

Suy ra:\(\frac{x^2P}{a^2}\ge\frac{x^2P}{4x^2}=\frac{P}{4}\)

\(\Rightarrow\frac{P}{4}\ge\frac{18503}{8}\)

\(\Leftrightarrow P\ge\frac{18503}{2}\)

Dau '=' xay ra khi \(a=b=c=\frac{2}{3}\)

Vay \(P_{min}=\frac{18503}{2}\)khi \(a=b=c=\frac{2}{3}\)